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Abstract—Deep learning systems are susceptible to evasion
attacks, which represent a significant category of security vulner-
abilities. These attacks entail the alteration of input data in such
a way that the victim Deep Neural Network (DNN) misclassifies
it. Researchers have devised detection and defense methods to
counter evasion attacks; however, these techniques impose a sig-
nificant computational burden and are not suitable for real-time
detection on devices with limited resources. Our paper presents
an infrastructure, GERALT designed to improve the efficiency of
evasion attack detection for real-time execution on edge devices. It
involves a partition analysis that optimizes detection methods and
allows for the use of a smaller detection network. Additionally, we
propose a hardware architecture that accelerates inter-network
inference using intermediate data reuse techniques and enables
a different pattern of model updates between cloud servers and
edge devices in real-world applications. Furthermore, it is also
extended to a principle of inter-network accelerator design, which
is evaluated at different PE ratios. Our evaluations demonstrate
that GERALT achieves more than 3x improvement in performance
compared to standard accelerators like Eyeriss, without affecting
detection and classification accuracy. The boosted model update
system avoids the bandwidth limit between edge devices and the
cloud server, saving 14 hours when updating the model for a new
evasion attack.

Index Terms—Evasion Attack Detection, Inference Accelerator,
Deep Neural Network, Adversarial Training, Adversarial Exam-
ple, Model Update from Cloud, Image Classification

I. INTRODUCTION

We are seeing an explosive proliferation of Deep Neural
Networks (DNN) across a variety of applications. Image
classification is a key area of application of DNNs, which
involves the determination of one or more target labels to a
given image, and is used in a variety of safety-critical systems,
including autonomous vehicles, healthcare, surveillance, etc.
Unfortunately, recent research has shown that DNN applica-
tions are vulnerable to a number of adversarial attacks. evasion
attack [26|], [37] stands out as a critical threat, which entails
introducing perturbations, such as noise, to the input image
with the aim of inducing misclassification. For instance, in
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automotive Computer Vision systems, evasion attacks could
lead to misclassifying stop signs as speed limit signs [9].
Given the critical nature of the targeted applications, an
unmitigated evasion attack on a DNN can result in catastrophic
consequences.

There has been significant recent research to address evasion
attacks [21]], [23]], [41]. A promising approach is self-evolvable
defense, which deploys defense strategies that can be recon-
figured in runtime to prevent the adversary from exploiting
knowledge of the implemented protection. These methods rely
on adversarial training [[10] to provide a robust defense against
evasion attacks. The idea is to use adversarial examples to
generate a trained model that is robust against evasion attack
[4]. However, since they depend on extensive training with
adversarial images, it is infeasible to deploy them on edge
devices with limited computational resources to enable real-
time self-evolution. On the other hand, moving the training to
cloud servers would require high communication bandwidth
to enable the transmission of large quantities of raw data from
edge devices. To address the first issue, the gap between the
new attack and the updated model should be minimized. For
the second problem, resource occupancy should be reduced for
edge devices. These challenges can be addressed by a real-time
detection system with high performance and energy efficiency.

In this paper, we propose a framework, GERALT, to enable
real-time detection of evasion attacks and only uploading
attack images to the cloud for adversarial training to im-
prove the robustness, which boosts the current model update
system. GERALT is an integrated combination of a partition
analysis of neural network (GERALT-part) and hardware ar-
chitecture (GERALT-arch) that work together to accelerate
inter-networking inference and provide architecture support
for optimizing detection neural networks. More precisely,
GERALT uses a smaller neural network for detection and
skips the computation of the classification network’s previous
layers by sharing intermediate data. The approach is inspired
by Transfer Learning [42]. We demonstrate how to use the
technique effectively to reduce inter-network computation with
3x improvement in performance. Note that the reduction in
computation is critical for viability of the approach in edge
devices where stringent resource constraints preclude high
computation-intensive solutions.

The paper makes the following important contributions.

o We propose a software-hardware system design to enable
real-time detection using neural networks for evasion
attacks, reducing the gap between attack and model
update.
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o GERALT is developed to optimize the computation of the
detection neural network to fit in the edge devices with
similar detection and classification accuracy.

e To our knowledge, GERALT is presented as the first
inter-network inference accelerator with intermediate data
reused to reduce computation with special storage pat-
terns and dataflow.

o The accelerator is further extended to the principle of
inter-network computation to guide the accelerator design
under similar conditions.

e GERALT is applied on an example detection method,
Feature Squeezing [41]] with both software and hardware
evaluation to prove the advantages.

o The boosted model update system is evaluated with real-
world data to prove the advantage, which saves 14 hours
when updating the model for new evasion attacks.

The remainder of the paper is organized as follows. Sec-
tion [lI| provides the relevant background. Section [[V-A] in-
troduces the GERALT-part approach and shows the design
idea. GERALT-arch is developed as the supporting hardware in
Section [[V-B|.. Section [V] presents our evaluation of GERALT-
arch. We discuss related work in Section [VI] and conclude in

Section [VIIl

II. BACKGROUND
A. Adversarial Training

Adversarial training has been demonstrated as a useful
technique for improving the robustness of machine learning
systems to evasion attacks. In this approach, attack images
are included in the dataset to train the neural network model.
These attack images are appropriately labeled with the correct
classes so that the model can learn the information about added
noise and make correct predictions. Although this method
may slightly reduce normal performance [31]], [36], it holds
tremendous potential for defense when given sufficient training

time and an adequate supply of attack images, which is
the key challenge to be addressed. A generative adversarial
network(GAN) can be used for generating existing attack
images, but it does not help with new attacks. This is why
we focus on improving the efficiency of detection.

B. Evasion Attack Detection

The evasion attack is named because of the purpose of evad-
ing the correct classification of the neural network, which is
recognized by adding noise to input images to get adversarial
examples. The small amount of noise will be amplified by the
nonlinear factor of the neural network and cause mislabeling
in the final prediction [22], [26], [29], [37], [39].

The current detection methods for evasion attacks can be
categorized into two classes. The first class involves the use
of neural networks for attack detection. In this approach, the
neural network learns the distinctive characteristics of attacked
images or temporary results derived from images in order to
recognize them as adversarial examples. The second class of
methods relies on alternative data sources, such as natural
scene statistics or network gradients, to build the classifier
for detecting evasion attacks.

Feature Squeezing [41]] is one of the promising approaches
for detecting evasion attacks. The input images are squeezed
to get two new images which are forward propagated through
the neural network to get three predictions. By comparing
the dissimilarities between the DNN’s predictions from the
compressed inputs and the original prediction, attacks can be
identified. The process is illustrated in Fig.[I] Each input image
is squeezed in two ways before being processed. With features
squeezed in color or bit depth, the noises on the image will
generate different output vectors. The dissimilarities over the
threshold between the DNN'’s predictions from compressed
inputs and the original one are used to identify attacks. To train
the threshold and get the best performance, training images
are loaded into the model for forward propagation, and the
distances of images are sorted to set up the threshold. How-
ever, the substantial overhead associated with these detection
techniques makes them impractical for real-world applications.

C. Inference Accelerators

Advanced architectures with specific dataflow and storage
patterns have been proposed to improve the performance of
DNN inference. General purpose accelerators like TPU, GPU
[17], [27] can reduce parts of the under-utilization caused
by the variability of neural network structure and dataset.
However, the requirement of applications other than neural
networks limits its potential for performance improvement.
Specific designed inference accelerators further explore the
opportunity of neural network computation, which increases
the data locality and reduces movement. Nevertheless, none of
these designs notices the relationship between networks which
can boost the usability of deep learning systems under certain
conditions like evasion attack detection.
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D. Transfer Learning

Transfer learning [42] entails leveraging a pre-trained model
from one task as a starting point for a model on a different
task. When applying Convolutional Neural Networks (CNN)
for image classification, the initial layers of the network learn
basic shape features such as edges, colors, and lines [24],
which stays the same in different classes of images shown
in Fig. [2| This information can be reused between networks
for different domains, reducing training time without compro-
mising accuracy. Since the previous layers are fixed without
weight update during transfer learning, the intermediate data
also stays the same enabling inter-network reuse.

III. REAL-TIME DETECTION SYSTEM ENABLED BY
GERALT

An essential feature of the GERALT system is to conserve
bandwidth and deliver attack images in a timely manner. To
illustrate the importance of this feature, let’s consider the
model update process for the traffic sign recognition system
for self-driving vehicles. In this system, the collected images
are leveraged to enhance the robustness of the neural network
model through adversarial training. Fig [3]shows the high-level
overview.

Original (in blue): Vehicle collects images and sends all
data back to the cloud for detection and adversarial training,
requiring huge bandwidth, which is not practical. According to
data from Tesla [38]], the Full Self-Driving chip (FSD) can pro-
cess 2300 frames from eight cameras on the vehicle. Assume
that the traffic sign images per frame are 5. Then the images
to be uploaded to the cloud are 11500 images per second.
With an image size of 5Kb, the requirement of bandwidth for
image uploading is 56.15 Mbps. In the meantime, the speed of
widely used LTE is 10Mbps. Although the network bandwidth
continues to increase, e.g., 10Gbps with 5G technology, this
is generally offset by the corresponding increase in image
resolution. Using the speed of image collection and network
bandwidth, we observe that uploading all images to the cloud
can not be realized under real-time requirements. E]

Boosted (in red): Here, detection is moved to the edge
with GERALT architecture, and only the attack images are
uploaded for Adversarial Training, which reduces most parts
of the image upload and shortens the gap between the attack

'In practice, the uploading of self-driving data is typically performed using
the user’s home internet outside of the operational time.

and model update. The total computation will be reduced
without sacrificing any accuracy. To illustrate the impact of
this approach, consider a scenario where one attack image is
present for every ten images. In such a case, the bandwidth
requirement is reduced by a factor of ten compared to the
previous setup where all images were uploaded. The reduction
of computation resources is shown in Section [V|and indicates
that human-driving vehicles (HV) can also be equipped with
detection hardware to provide enough attack images for train-
ing together with self-driving vehicles (SV).

IV. GERALT OVERVIEW

Real-time detection using neural networks poses a signif-
icant challenge due to the added computational overhead.
In a conventional implementation, the additional detection
neural network requires approximately twice the computation
of normal inference. GERALT offers a solution to this issue
through a combination of adjusting model structure and ac-
celerating inter-network inference. Fig [] outlines the flow of
our design. The design flow can be divided into two main
components: partition analysis (GERALT-part) and architecture
details (GERALT-arch). In our design, the actual computation
is determined by the connection point between networks.
Therefore, before going deep into the architecture details, we
will explain the partition analysis of the inter-network system.
Details will be discussed later in subsections.

A. GERALT-part: Optimizing the Detection Network

To design the architecture with inter-network optimization,
it is crucial to analyze and select the most efficient connect-
ing method. GERALT-part aims to optimize the detection of
adversarial examples by separating the computation required
for detecting them from the classification process. It enables
the detection of adversarial examples while the intermediate
data from the detection neural network is transmitted to the
classification network for further computation. This approach
reduces overhead and enables efficient processing of data. To
reuse the intermediate data, several factors need to be de-
termined through partition analysis. This includes identifying
which results should be used for subsequent computations and
determining which layer should accept the intermediate data.
Correspondingly, GERALT is guided by extensive experiments
targeted to identify optimal settings of different parameters.

Using this strategy includes a number of challenges. The
first issue arises from the fact that when employing a separate
neural network for detection, the size of the intermediate
feature map may not be appropriate for loading into the
classification network for inference directly. Additionally, the
number of channels can vary between layers even when both
networks use the same-sized feature map. Finally, it can be
challenging to identify the layer that has the most pertinent
data for classification. The processes in GERALT-part involve
overcoming these difficulties and designing an inter-network
structure that performs similarly to the original model.

Gathering Baseline Accuracy:
A common neural network is chosen as the benchmark for
classification accuracy in order to assess the efficacy of the
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proposed GERALT technique. Additionally, a different smaller
neural network will act as the baseline detection network. To
produce adversarial examples, noises are then applied to the
dataset. The efficiency of the detection network is assessed
using both the original and the adversarial images to ascertain
the fundamental detection accuracy.

Investigating the Optimal Inter-Network Inference Structure:
To connect the two neural networks and optimize the proposed
approach, two options are employed. The results of these
options are compared to determine the best configuration of
GERALT-part, as outlined in Section [V}

1) To ensure that the classification model can efficiently
process intermediate feature maps from different layers,
the detection model’s structure is modified in terms of
dimensions. This modification ensures that the classi-
fication model receives feature maps of an appropriate
size from various layers.

2) We only scale the size of feature maps that are sent to
the classification model. This step is crucial for reducing
overhead and optimizing the inter-network structure but
may cause an accuracy drop. By transmitting only the
resized feature maps, the classification model can effi-
ciently process the data without the need for additional
computation or data transfer.

B. GERALT-arch: Accelerating Inter-Network Inference

While GERALT-part optimizes the evasion attack detection
calculation using a smaller detection network, current accelera-
tors do not support the corresponding computation. This prob-
lem is solved by GERALT-arch, which offers an inter-network
design for reusing intermediate data. This design, shown in
Fig. 5] makes use of three important observations. First of
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Fig. 6. GERALT Storage: There are only 3 groups of Ping-pong buffers of
DN in this figure. CN’s Ping-Pong buffer is not shown.

all, unlike neural network training with back-propagation and
weight updates, the inference phase does not require the
storing of intermediate data, which reduces the need for off-
chip storage and bandwidth. As a result, DRAM can be smaller
and use less energy. Second, the threshold of on-chip delay
rises when image loading gets more frequent and computation
time for one image is relatively low. Finally, additional "write”
operations from the detection network, rather than just “read”
operations from the classification network, are included in the
reuse of intermediate data. Therefore, pipelining the compu-
tation of detection and classification networks would result in
the sequential execution of various operations within the same
memory space. The GERALT-arch framework offers a practical
design that permits the reuse of intermediate feature maps
between the detection and classification networks in order to
address these issues and optimize inter-network data transfer.
This design minimizes the requirement for additional data
transfer and storage, improving energy efficiency and lowering
overhead.

1) Storage Pattern: In light of the aforementioned de-
sign decisions, we put together the storage architecture for
GERALT-arch in Fig. [6] The computing results are stored
in four groups of ping-pong buffers, three for detection and
one for classification. All kernel weights are stored in two
groups of weight buffers, one of which is shared by three
smaller detection networks and the other by the classification
network. In order to facilitate the pipeline between networks,
a collection of specialized reuse buffers is installed to store
the intermediate data of a particular layer.

2) Inter-Network Interface Dataflow: The changes made to
the data flow in GERALT-arch are shown in Fig. [/] Weight
stationary is used as the standard flow type. Adder Trees
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are utilized to collect the results from the 3x3 PE channel.
The input/output management module handles the pattern of
loading and storing the intermediate data. Three detection
networks receive the image from off-chip memory, put it into
their ping-pong buffers, and then do inference on the front
layers until they reach the connection point. To avoid idleness,
the connection point’s outputs are saved in the reuse buffer at
the same speed as the ping-pong buffer. As seen in Fig. 8] the
detection networks then move on to the next connection point
for a new input and provide data to construct the pipeline. The
calculation time for classification should be the same as that
for detection for the best latency. As a result, we establish the
PE channel ratio to be 63:1.

3) Principle of Reusing Intermediate Data in Hardware
Level: Based on the discussions above, we expand the design
idea to a principle of reusing intermediate data between any
two Neural Networks. There are two factors to account for
when designing an inter-network inference accelerator: (1) the
ratio of processing elements for two networks to keep the
pipeline working; and (2) the reasonable gap period to avoid
data conflict on the connection point.

The following formula is used to calculate the ratio of
computation resources to balance the pipeline:

(C+ Y L x O x (K)*) + Uy
E?:cz I; x O; x (Ki)Q = U

Here U; and U, is the utilization of different architecture
used to process the computation of two networks; I;,0;,K; are
the feature map dimensions and used to calculate the computa-
tion of layer ¢; m,n is the total layers of two network; c;,co are
the connection points, ¢; is not shown because it only affect
the data to be reused; C' means the additional computation for
special operations, like the preprocessing/squeezing of input
images in our example.

To avoid data conflict, the start point of classification in the
control flow should be later than the storage of the final results

R, =

of the Connection point — SQZ, which varies in different
architectures. The following formulas indicate the components
of the gap before the start of classification computation:

_Cpl+CiT
9 U1XR1

Here Cp,; is the computation required for finishing the com-
putation of previous layers, and C;,. means the computation
required for finishing part of the connection point’s results
required by classification and storing them to the reuse buffer.
R, represents the allocated resources for the detection neural
networks. Normally the C;,- can be ignored because it requires
a dual-port BRAM with higher energy consumption. Note
that although the defined gap can be reduced by increasing
utilization or PE numbers, it cannot be used to determine the
exact computation resources.

G

V. GERALT EVALUATION
A. Evaluation of GERALT-part

In the experiments, we use AlexNet [20] and ResNet-50
[12] as the classification network. They are trained with a
traffic sign dataset including 51,839 images in 43 classes [33]].
Besides, for evasion attack detection, we choose SqueezeNet
[[14] and ResNet-18 with smaller sizes. The models are trained
under the learning rate of 0.01 with the batch size of 16. The
loss function is CrossEntropyLoss and the optimizer is SGD.
To get adversarial examples, we use Deepfool [26] attack with
the knowledge of the target neural network’s structure.

The experimental results from different configurations are
presented in Table [l and Table [l We have selected the
configuration settings aiming at achieving maximum clas-
sification accuracy. In the configuration setting, the names
“Connection point — SQZ” and “Connection point — AN”
configurations imply that the corresponding layer’s outputs
in SqueezeNet will be reused as intermediate data, to be the
input of another specific layer in AlexNet. More precisely,
we build a classification inter-network system that performs
the computation before “Connection point — SQZ” and after
“Connection point — AN”. Similarly, the "Connection point —
18” and ”Connection point — 50” configurations are employed
in experiments involving ResNet. In addition, the methods of
“Resize” and ”Structure” are employed to adjust the network
sizes in accordance with the techniques outlined in Section
[[V-A] Furthermore, experiments are constrained to layers with
equivalent channel numbers.

Remark 1: Note that the configuration of the connection
points only affects the accuracy of the classification and does
not charge any computation of detection. Our work primarily
focuses on accelerating the detection process and the ability
to counter evasion attacks. The effectiveness of the adversarial
training itself is not the focus of this work, since it has been
comprehensively covered in previous works [2]], [45].

Table [I] presents the accuracy of Alexnet connected with
SqueezeNet. For the "Resize” method, the best accuracy drops
13% but we get some significant observations here. Our first
observation is that the information contained in “Connection
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point-SQZ”, determines the accuracy. Even if we change
“Connection point — AN”, the accuracy barely varies. Next,
the accuracy is affected by the information suitability of
“Connection point - AN”. The latter layer performs better as
the “Connection point — AN”, shown in settings 4, 7, and 10.
The optimal accuracy is attained by setting 17 which indicates
significant pertinent information is imprinted in the “fire5”
layer of SqueezeNet while the concluding layers of AlexNet
are better equipped to accommodate this data.

The experiments indicate that modifying the network struc-
ture yields better outcomes than resizing the feature map
directly. This disparity can be attributed to information loss
during resizing operations and inconsistencies between con-
nection points. These findings allow for efficient computation
optimization between any two CNNs. Accordingly, GERALT
employs setting 17 as the functional configuration to guide
the hardware design. Additionally, Table [l and Table [II|
corroborates the connection point’s generalizability.

We have also evaluated the detection accuracy of two detec-
tion methods after optimization with GERALT-part. According
to our findings, the implementation of optimized Feature
Squeezing demonstrates a slightly superior detection accuracy
of 0.5% when compared to the traditional method, while
maintaining a 94.8% true positive rate. It is worth noting that
this marginal improvement is within the expected range of
normal fluctuation, as our optimization process does not alter
the detection algorithm and computation.

B. Evaluation of GERALT-arch

We use the Xilinx VCU118 evaluation board to implement
GERALT-arch which has 75 Mb of BRAM on chip and 20
Gb of DDR4 off-chip memory. Details of the chip and board
are shown in Table m In total, 64 3 x 3 PE channels are
deployed. Each detection PE channel is equipped with one
pair of ping-pong buffers with a size of 0.15Mb. All detection
PE channels share 21 weight buffers for 0.24 Mb weights. An
optimized weight stationary architecture is used as the first
baseline which is also employed in Dandelion [5]], designed
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TABLE I

ACCURACY OF ALEXNET CONNECTED WITH SQUEEZENET. THE NAMES
“CONNECTION POINT — SQZ” AND “CONNECTION POINT — AN” IMPLY
THAT THIS LAYER’S OUTPUTS IN SQUEEZENET WILL BE REUSED AS
INTERMEDIATE DATA, TO BE THE INPUT OF A LAYER IN ALEXNET.

Setting | Connection Point-SQZ | Connection Point-AN | Resize | Structure | Accuracy
Origin N/A N/A N/A N/A 93.63
0 fire6 relu3 Yes No 62.29
1 fire7 relu3 Yes No 62.29
2 fire6 conv4 Yes No 62.29
3 fire7 conv4 Yes No 62.29
4 fire4 relud Yes No 60
5 pool2 relud Yes No 32.57
6 fireS relu4 Yes No 56.57
7 fire4 convs Yes No 60
8 pool2 convs Yes No 32.57
9 fire§ convs Yes No 56.57
10 fire4 relus Yes No 76.57
11 pool2 reluS Yes No 32,57
12 fire5 relus Yes No 68.57
13 fire4 relusS No Yes 87.43
14 fire5 relus No Yes 89.14
15 fire4 convs No Yes 91.20
16 pool2 convs No Yes 94.23
17 fire5 convs No Yes 94.70
TABLE II
ACCURACY OF RESNET-50 CONNECTED WITH RESNET-18
Setting | Connection Point-18 | Connection Point-50 | Resize | Structure | Accuracy
Origin N/A N/A N/A N/A 96.00
0 fire5 layer3_1 No Yes 97.47
1 convlx conv3x No Yes 96.29
2 convlx conv4x No Yes 96.37
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TABLE III
ACCURACY OF VGG-16 CONNECTED WITH SQUEEZENET

Setting | Connection Point-18 | Connection Point-50 | Resize | Structure | Accuracy
Origin N/A N/A N/A N/A 96.00

0 fire5 layer3-1 No Yes 9747

1 fire5 layer3-2 No Yes 97.83

2 maxpooling3 layer4-1 No Yes 96.71

2 maxpooling3 layer4-2 No Yes 96.71

2 fire9 layer4-1 No Yes 95.27

2 fire9 layer4-2 No Yes 95.65

TABLE IV
HARDWARE SPECIFICATION FOR EXPERIMENTAL EVALUATION

Virtex UltraScale+ XCVU9P-L2FLGA2104
47.5 x 47.5
200 (On-chip); 50 (Off-chip)
0.825-0.876 (Chip); 12 (Board)

Technology

Chip Size (mm)
Clock Frequency (MHz)
Voltage (V)

System Logic Cells (K) 2,586
CLB Flip-Flops (K) 2,364
CLB LUTs (K) 1,182
Total Block RAM (Mb) 75.9

to address the significant variation in kernel size while utilizing
similar hardware configuration like GERALT-arch. The second
baseline is Eyeriss [|6], a popular inference accelerator using
row-stationary dataflow to reduce under-utilization. The base-
lines are utilized in two different modes: (1) a straightforward
approach that involves running three classification networks
sequentially to achieve joint detection and prediction, and (2)
a smart implementation of the Feature Squeezing method with
optimized computation, but does not reuse intermediate data.
The computation resources are constrained to the same level
to demonstrate the comparative performance.

The runtime improvement of GERALT-arch is depicted in
Fig. [O(a). The efficient implementation of Feature Squeezing
benefits from the utilization of a smaller network for detec-
tion, which leads to reduced computation. Additionally, the
reuse of intermediate data results in further improvement in
performance, yielding a speedup of up to 3. This approach
skips the computations of previous layers in the classification
process, which consume a significant portion of the base-
line’s runtime. Memory usage is indicated in Fig. [9(b). The
GERALT-arch occupies a slightly larger BRAM space due
to its pipeline execution for intermediate data, but a large
amount of storage space required for kernel weights of the
larger classification network can be avoided. Furthermore, the
weight buffer size gap between the GERALT-arch and the
50x larger AlexNet model is significant. Our design achieves
more than 4x reduction on memory consumption. Finally,
Fig. [O[c) depicts the energy efficiency of each architecture
in order to consider their viability on edge devices. Due
to the difficulty of reducing GPU computation, we solely
evaluate its energy efficiency, which indicates elevated power
consumption and under-utilization when executing less dense
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computations. GERALT experiences reduced off-chip DRAM
accesses, resulting from the advantageous employment of less
and fully-buffered weights. Furthermore, greater efficiency
is achieved due to the reduced on-chip BRAM size and
minimized register file requirements.

To evaluate the principle of inter-network design, we change
the ratio of computation resources around the optimized value
from the formula. Fig. indicates how the runtime will be
affected by the ratio with fixed computation resources. It is
clear that the distance from the optimized ratio decreases
the runtime in different ways. The reason is because of the
big value of the R4, meaning that most of the resources are
allocated to the detection network to balance the pipeline. This
also explains why the runtime of the detection network does
not increase significantly at the right side of the reference line.

Note that our proposed method only works on systems using
two or more connected neural networks. Furthermore, given
the concept of transfer learning mentioned in Section [[I} the
reuse of intermediate data is also limited to convolutional
neural networks, e.g., for image recognition. However, we
believe that these limitations will not significantly affect the
applicability of our method since CNNs are central compo-
nents for many current applications like autonomous driving;
furthermore, these applications typically involve more than one
CNN to address the computational demands of the task.

C. Evaluation of System Boosted by GERALT

As discussed in previous sections, GERALT enables real-
time detection and can change the current model update pattern
of self-driving systems. To evaluate the impact of GERALT on
the update of the traffic sign recognition model, we collect
necessary information from multiple sources and calculate
the time used for retraining the neural network model with
reasonable assumptions. Note that the model is not constrained
to a specific structure and size. Obviously, details of dataset
characteristics and training methodology are proprietary to
the industry and not disclosed. Consequently, we develop
estimates for different metrics involved indirectly through
other available parameters as follows. The computation of
model retraining is represented by the required GPU hours
on Tesla’s cloud server and other necessary information. This
evaluation focuses on the speed-up of image uploading and the
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improvement of the model update’s delay. The model update
is divided into three steps: image collection, image detection,
and model retraining. The original system and boosted system
are evaluated in these three stages.

Step 1: Recall from Section [III] that the currently used
Hardware 3 of the Autopilot system can collect 2300 frames
from real-time traffic videos per second and requires a band-
width of 56Mbps for real-time uploading. Only in the original
system, the uploading of images to the cloud will be limited
by the bandwidth of the current connection on the vehicle or at
home. The average driving time in the US is 52 minutes every
day [34]. An assumption is made that the driving behavior
happens mostly in the daytime which is about 10 hours a
day and most of the images are collected during the daytime
evenly.

Step 2: In the original system, the uploaded images will
be processed on the cloud in the original system to detect
attack images. Since the computation resources on the cloud
are abundant and the pipeline is utilized to reduce latency,
the delay is ignored for detection. For the boosted system,
the detection is performed together with classification and can
be considered with no extra computation delay. We assume
that there is 1 attack image among 1000 images and the
bandwidth requirement becomes 57Kbps meaning that the
uploading delay can be ignored as well.

Step 3: Attack images are used for adversarial training
on the cloud in both systems. The training of 48 networks
takes 70000 GPU hours to finish [35]. With 5760 GPUs in
Tesla’s Al Training center, it takes 12.15 hours to retrain only
one network with 120 GPUs.

Fig. [IT] compares the number of retrained images between
the Original and Boosted systems. Since the image collection
in the original system is affected by the bandwidth limit, the
time used to collect the same number of attack images and
retrain the model is delayed for 14 hours with the upload
speed of 0.57Mb per second using Tesla’s Wall Connector
during charging. This will significantly slow down the reaction
to new attacks.

VI. RELATED WORK

There has been significant research on detecting and defend-
ing against evasion attacks. One notable approach is SafetyNet
[23]], which identifies abnormal Relu results to reject inputs

that have been attacked. Carrara et al. [4] employ LSTM train-
ing to learn how to transfer input representations that map to
different areas for attacked images. To improve the adaptability
of detecting accuracy, a detector neural network [25] is trained
together with a larger network. Debicha et al., developed
a transfer learning-based adversarial detector comprised of
multiple detectors which showed enhanced detectability of ad-
versarial traffic compared to a single detector [7]]. In [11]], Guo
et al., came up with the very first hardware accelerator based
on memristor crossbar arrays for adversarial attacks which
significantly improves the throughput of a visual adversarial
perturbation system along with the robustness and security of
future deep learning systems. Cao et al., proposed region-
based classification to ensemble information in a hypercube
centered to predict the correct label which significantly miti-
gates evasion attacks without sacrificing classification accuracy
[3]]. Herath et al., [|13]] proposed LAM (Log Anomaly Mask) to
perturb streaming logs with minimal modifications to design
it as a reinforcement learning agent that operates in a partially
observable environment to predict the best perturbation action
and it significantly reduces the accuracy of the model. A fault
sneaking attack on DNNss is developed by Hu e al., [44] where
the adversary aims to misclassify certain input images into any
target labels by modifying the DNN parameters and it can
inject multiple sneaking faults without losing the overall test
accuracy performance.

For model updates in edge intelligence, there has been work
on minimizing the data transferred and reducing the size of
the model. Song et al. [32] shows how to use the unsupervised
learning method to distinguish useful data from big raw data
to save the bandwidth requirement. Correspondingly, com-
pression and quantization of machine learning models have
been successfully used for minimizing model size [40] [30].
However, these methods only focus on the condition of one
neural network and are orthogonal to our proposed design.

Numerous accelerator designs have been proposed to op-
timize the performance of deep learning applications. The
Equinox architecture, as described in [8]], enables interleaved
training during idle inferences, which enhances the overall
utilization of the system. PUMA [1]] is an energy-efficient ac-
celerator designed to support scalable computation of various
neural network models using advanced memristor technology.
GCONV [43] utilizes computation mapping techniques to
enable efficient inference or training accelerator design by
mapping different computations to the same pattern. Un-
like GERALT, which leverages inter-network computation, the
approaches mentioned, these approaches(together with GPU
[28]], TPU [18]] and other architectures [[15]], [16]], [19]) do not
utilize the opportunity in inter-network computation.

VII. CONCLUSION

GERALT is proposed in this paper to optimize the com-
putation of evasion attack detection and accelerate inter-
network inference. First, the detection method is analyzed
to partition the computation and connect two neural net-
works for the following architecture design in GERALT-part.
Then GERALT-arch provides necessary architecture support
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to enable the reuse of intermediate data for inter-network
acceleration. What’s more, the design of inter-network ac-
celerators is extended to a general principle. It is proved by
our experiments that GERALT improves the performance of
inter-network inference while obtaining high energy efficiency
using less memory. The period of model update can also be
shortened without bandwidth limitation.

In future work, we will extend GERALT for more functions
like enabling efficient evasion attack defense, e.g., denoising
and generative adversarial network (GAN).
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