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Abstract—Modern application-specific System-on-Chip designs
include a variety of accelerator blocks that customize microcon-
trollers with domain-specific instruction sets and optimized mi-
croarchitectures. Unfortunately, accelerator implementations can
be highly error-prone, undermining the reliability and security of
the entire system. In spite of recent successes in formal methods,
full verification of a complex accelerator microarchitecture is still
beyond the scope of state-of-the-art formal technologies. In this
paper, we address this problem through a novel methodology
for incremental verification that can be tightly integrated with
the design process. Our approach depends on a new foun-
dation for microarchitecture correctness that enables viewing
microarchitecture features as program transformations in a
compiler design. The foundations enable designing microarchitec-
ture features as incremental, semantics-preserving optimizations.
We show how to use the foundations to develop correct-by-
construction implementations of various advanced features of
modern microprocessors. We demonstrate the viability of the
foundations in designing correct-by-construction methodology for
a superscalar microarchitectural implementation of the Versatile
Tensor Accelerator.

Index Terms—Correct-by-construction design, transformation-
based design formal verification and composition, microarchitec-
ture design.

I. INTRODUCTION

MODERN application-specific System-on-Chip (SoC)
designs include a variety of accelerator blocks for

domain-specific applications. Such accelerators often use cus-
tom microcontrollers with their own instruction sets and
highly optimized microarchitecture implementation. For in-
stance, it is common for an SoC targeted for medical
imaging to have its signal processing accelerator imple-
mented as a microcontroller with custom vector processing
instructions with a microarchitecture optimized for targeted
real-time requirements under aggressive power constraints.
Furthermore, implementations of microarchitecture features
are distributed across hardware and software (microcode)
components. Obviously, bugs in these microarchitectures
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can undermine the entire system functionality, possibly requir-
ing complex in-field patching, or product recalls.

One approach to ensure correctness of a microarchitecture is
formal verification, which entails the use of mathematical logic
to prove that a computing system meets its specification. In case
of an accelerator, the specification is defined by the Instruction
Set Architecture (ISA) that represents the programmer’s view of
the accelerator [1]. Microarchitecture verification is one of the
most widely studied areas of formal verification, with research
spanning over two decades [2], [3], [4], [5], [6]. However, in
spite of extensive research, its adoption in industrial design
flows has been limited. A key challenge is the high cost of for-
mal verification for a practical microarchitecture design. Most
modern microarchitectures include features such as pipelining,
out-of-order, speculative, and superscalar execution, memory
hierarchy, a variety of exceptions and interrupts, etc. While
formal verification of microarchitectures with such features
have been accomplished [4], [7], they have depended on sig-
nificant human interaction and often taken multiple man-years
to achieve. Given the aggressive time-to-market requirements
of today’s accelerator designs, the cost of adopting such a
verification methodology is prohibitive.

One approach to address the high cost of verification is to
enable integration of verification as part of the design pro-
cess. In particular, design of an accelerator microarchitecture
includes an iterative process of feature addition phase, where
new features are incrementally added to improve performance
and energy efficiency (see Section III). We refer to a verifica-
tion methodology as incremental if each feature can be veri-
fied individually and the results composed to derive an overall
proof of correctness. An incremental verification methodology
ensures that each added feature preserves the ISA function-
ality of the accelerator, and consequently produces a correct-
by-construction methodology for microarchitecture design.
Furthermore, an incremental methodology can significantly
ameliorate verification complexity reducing the abstraction gap
between successive feature additions. Unfortunately, existing
verification methodologies are not directly amenable to incre-
mental verification. Indeed, the different verification method-
ologies and even notions of correspondence employed for
various microarchitectural models have become increasingly
subtle, complex, and even controversial [1], [5], precluding their
use as foundations for an incremental verification methodology.

In this paper, we develop a formal foundation for mi-
croarchitecture analysis that enables incremental analysis of
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different microarchitecture features. The foundations have been
mechanized in Dafny [8], and the properties of the formalization
discussed in the paper have been mechanically checked. We
demonstrate the approach in the correct-by-construction design
of a superscalar microarchitecture implementation of the Ver-
satile Tensor Architecture (VTA).

Central to our approach is the idea to view each microarchi-
tecture component as a program transformer, i.e., a mapping
from a stream of instructions to another “equivalent” stream of
instructions. This view makes explicit the role of each microar-
chitecture feature in executing program instructions. We show
how the formalism facilitates intuitive, incremental analysis of
different microarchitecture features. Finally, a key benefit of our
approach is the ability to formalize the verification of micropro-
cessors as an extension of compiler verification, which permits
re-purposing of insights and tools from compiler analysis and
enabling seamless software and hardware co-design.

VTA, the accelerator microarchitecture used in this paper
as a demonstration vehicle, is a deep learning accelerator for
fast and efficient dense linear algebra. The microarchitecture
implementation includes features like multiple issue queues,
variable execution pipelines for general matrix multiplication
and arithmetic-logic computations, microcode for tensor op-
erations, etc. We show how to design the VTA microarchi-
tecture as a sequence of transformations, and demonstrate our
formalism for automatic, incremental compositional verifica-
tion through symbolic simulation tools. We are not aware of
other correct-by-construction flows for microarchitectures of
similar complexity.

The paper makes four important contributions. First, we
develop a new formalization of microarchitecture correctness
making explicit the program transformation view. Second, we
develop extensive foundational treatment for microarchitecture
analysis based on this formalization, to support incremental,
compositional verification. Third, we show how to mechanize
our foundational analysis in Dafny. Finally, we demonstrate
the viability of the methodology through the design correct-by-
construction design of a superscalar VTA microarchitecture.

The rest of the paper is organized as follows. Section II
briefly reviews related work in microarchitecture verification.
We describe current practice in accelerator microarchitecture
designs and explain how our approach ameliorates verification
complexity in Section III. In Sections IV, V, VI, and VII, we
put together the foundations of the new analysis and derive
several proof rules. Section VIII shows how to formalize various
advanced microarchitectural features as program transformers.
Section IX discusses the mechanization of the foundations. In
Section X, we discuss the use of the methodology in correct-
by-construction design of the VTA microarchitecture. We con-
clude in Section XI. Although, the foundations are mechanized
in Dafny, the paper itself does not require prior familiarity
with Dafny.

II. RELATED WORK

Analysis of microarchitectures has been a quintessential re-
search topic in formal verification. The goal is to show that
the execution of the microarchitecture model has the same

behavior as the ISA. Some of the early studies have used skewed
abstraction functions [9], [10] to map the states of the pipeline
at different moments to a single ISA state. Burch and Dill [3] in-
troduced the idea of flushing to reason about pipelines. Different
verification strategies and notions of correspondence have been
developed over the years to account for exceptions, interrupts,
out-of-order and speculative executions, and many others [4],
[5], [6], [11], [12], [13], [14]. Formal verification has been
successfully applied on industrial microarchitectures. Goel et al.
[15] used theorem proving together with automated formal tools
verify the Register Transfer Level (RTL) implementation of
the x86 instruction decode, translation, and execution units and
the associated microcode. Kaivola et al. [16] performed formal
verification of the Intel i7 processor execution engine, which
involves notable manual effort in formally specifying and ana-
lyzing the intended behavior of thousands of micro-instructions.
Reid et al. [17] proposed ISA-Formal, which generates an
architectural model from an ARM’s formal specification and
then verifies an ARM implementation for equivalence against
the model using bounded model checking. Similar approaches
are taken in [18], [19] However, in spite of these impressive
efforts, the cost of formal verification remains high: all the
industrial results above reported many person-months of effort.
A critical challenge in the current verification methodologies
is the lack of support for interactive composition: verifica-
tion technologies and even notions of correspondence are tied
to specific microarchitecture features and sometimes mutually
inconsistent [1], [5].

Correct-by-construction hardware design has been a focus of
significant research over the last two decades. An early work
applying microarchitecture transformations was by Arvind and
Shen [20] that used term rewriting for microarchitecture trans-
formations. However, this work targeted low-level architecture
equivalence semantics and did not consider compositional anal-
ysis of microarchitecture features. More recently, there has been
research on integrating sequential equivalence checking (SEC)
with synthesis flows [21], [22], [23] and SEC between RTL and
gate-level hardware designs [24]. Research has also be done
on combinational equivalence checking between high-level de-
signs in software-like languages (e.g., SystemC) and RTL de-
signs [25]. To summarize, most of the approaches follow the
design-then-verify paradigm, which make the verification not
scalable to the complex designs. This paper presents a correct-
by-construction methodology by breaking down the design
process into a sequence of small and easy-to-verify correctness-
preserving steps.

To overcome these limitations, we draw inspiration from
compiler design and verification, by treating a microarchi-
tecture design as a composition of semantics-preserving pro-
gram transformations. The most notable work in this area is
a formally verified C compiler called CompCert [26], [27].
In addition, the Vellvm project [28] formalized LLVM’s inter-
mediate representation with a framework for reasoning about
programs. Pnueli et al. proposed the notion of translation
validation [29] for validating instances of program transfor-
mations during compilation. Necula used symbolic evalua-
tion techniques from proof-carrying code to tackle translation
validation [30].
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Fig. 1. Design phase 1: incremental microarchitecture feature addition for VTA.

Fig. 2. Design phase 2: refinement for VTA hardware.

III. MICROARCHITECTURE DESIGN PRACTICE, VERIFICATION

CHALLENGES AND PROPOSED SOLUTION

Design of a modern accelerator microarchitecture roughly
entails two distinct phases, which we refer to as (1) feature addi-
tion and (2) design refinement. Here we use the VTA accelerator
design to illustrate the two phases. Note that VTA microar-
chitecture (Fig. 2) incorporates substantial complexity, with
sophisticated optimizations including data localization, barrier
insertion, mapping operations to multiple cores, etc. We use it as
a motivating example to demonstrate the practical complexities
involved in microarchitecture optimizations and emphasize the
critical need for a verification methodology tightly integrated
with design. Details of the individual optimizations will be
discussed in Section X. In the first phase (Fig. 1), the microar-
chitecture is incrementally elaborated, starting with its architec-
ture, with a variety of features such as data localization, barrier
insertion, sequencing, and scheduling to meet its performance
and energy targets. In current practice, each added feature is
typically modeled in software (e.g., in C or C++) and assembled
into an executable model which can be simulated with target
application workloads to evaluate microarchitecture decisions.
Towards the end of the first phase, the features are partitioned
into software and hardware components of the VTA. In the
second phase, software features are refined and implemented
as the compiler/runtime for VTA, while hardware features are
refined and implemented as the RTL model. Fig. 2 shows exam-
ples for the hardware component, including the three EXEC_LS
modules simplified into Load, Store, and EXEC_RF, and
the variable-size GEMM (General Matrix Multiplication) module
simplified to the fixed-size BMM (Block Matrix Multiplication)
module. Currently, the hardware refinement and implementa-
tion is done through manually crafted RTL over many iterations.
However, over the past decade, there have been numerous suc-
cess stories in applying High-level Synthesis (HLS) to improve

design efficiency while achieving optimization objectives com-
parable to the manual implementation [31], [32], [33].

In both phases, every decision made on a feature addition or
refinement comes with an intent to incrementally improve per-
formance or energy efficiency while preserving the functional
correctness of the accelerator. Unfortunately most of these in-
tents are poorly documented or undocumented at all, let alone
formalized. This presents one of the key bottlenecks in applying
formal verification to a complex design, which is tasked to show
the functional equivalence between the design at one stage (e.g.
stage 3 in Fig. 1) and the elaborated design at the next stage (e.g.
stage 4 in Fig. 1). The reality is even worse as most of these
intermediate stages are not recorded, leaving formal verification
to often deal with the enormous gap between the initial design
(e.g. stage 0 in Fig. 1) and the final implementation (e.g. stage
3 in Fig. 2). This precludes direct application of sequential
equivalence checking techniques that rely on matching internal
variables of the two designs to effectively decompose verifica-
tion problems. Consequently, verification typically requires the
user to hand-craft complex invariants that precisely capture the
relation between the state of each microarchitecture modules
and the state of each (possibly partially executed) instruction
[4], [5]. The expertise and effort this requires has made it
impossible for any design company to adopt formal verification
to ensure the complete correctness of a product.

To overcome the barrier, we draw inspiration from the com-
piler world where a compiler translates a source program
through a sequence of semantics-preserving program trans-
formations (passes) to a program to be executed on a target
platform. The correctness of a compiler can be established
correct-by-construction in a scalable way by proving that all
passes in the compiler are semantics-preserving and all per-
missible compositions of these passes are also semantics-
preserving [26], [27], [28], [30]. We extend these ideas to
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hardware design and verification by formalizing and verifying
the functionality of each feature addition in the microarchitec-
ture as an on-the-fly program transformation on an input ins-
truction stream (Section VI and Section VIII). The overall cor-
rectness proof is then derived using the composition theorems in
Section VII. This approach also allows a seamless software and
hardware co-design.

To our knowledge, this paper represents the first work to lay
a solid and practical foundation for future microarchitecture
design and verification in a scalar, modular and correctness-
assured way. Such an approach is necessary to combat the
exponentially growing cost for a new chip design with today’s
design practice (already exceeding $0.5B at the 5nm node
[34]), where verification has become the dominant factor of
the cost. Companies are forced to run expensive end-to-end
validation on application workloads using cloud-based simu-
lation and emulation but still with no guarantee on complete
correctness. An analysis of bugs in Intel designs and products
root-causes these bugs to subtle corner-case issues in the mi-
croarchitecture features and their interactions on top of issues
in manual implementations, which can be discovered and fixed
much earlier with our rigorous approach. Such bugs have caused
the company to lose market opportunities and incurred huge
costs for the company to fix [35], [36]. We believe our approach
can significantly improve design and verification efficiency and
quality as well as product time-to-market, even for the current
design practice by introducing feature and composition based
verification collaterals.

Remark 1: As microarchitectures get increasingly complex,
the distinction between different abstraction levels is getting
increasingly blurred. Addition of a microarchitecture may entail
successive and iterative elaborations; each elaboration break-
ing a complex operation into a composition of more primitive
blocks. For instance, a floating-point algorithm in the execution
unit of a modern microcontroller pipeline may be implemented
in microcode, which entails creating a (simpler) microcontroller
with its own microarchitecture elaborations (e.g., further data
localization). Our methodology creates a tightly coupled iter-
ative verification loop integrated with this iterative elaboration
process. Once the elaborations are complete, RTL implementa-
tions is generated either automatically through HLS or through
manually crafted RTL. Obviously, for end-to-end correctness,
the generated RTL needs to be verified against the (final)
feature-added microarchitecture model. We do not discuss that
process here, but we note that previous work showed how to
develop a corresponding correct-by-construction flow for such
RTL through integrated equivalence checking [21], [22], [23];
that flow, connected with the methodology here, enables end-
to-end integrated design verification.

Remark 2: Obviously, there is effort involved in the formal-
ization and verification of individual transformations. As we
discuss in Section IX, this effort can be non-trivial. However, in
our experience, this cost is still significantly less than the cost
of verifying an optimized microarchitecture model post facto,
since the verification complexity is amortized over the differ-
ent transformations. Furthermore, a transformation needs to be
verified only once and can be used over and over for different

microarchitecture optimizations. Finally, we extensively sur-
veyed and analyzed a variety of industrial microarchitectures,
and based on this analysis we believe that the methodology is
applicable to all existing microarchitecture implementations. A
key reason is that the transformer view proposed in this paper
closely mimics the (informal) reasoning process employed by
architects in performing the respective optimizations.

We end this section with an observation about suitability
of the methodology on accelerators. The methodology itself
can be applied to any microarchitecture, not only accelerators.
Indeed, in our experience, verification of traditional microar-
chitectures can benefit from the program transformer view by
enabling effective problem decomposition. However, for legacy
microarchitectures, intermediate models from feature additions
may not always exist and may have to be deconstructed from
the implementation. On the other hand, when designing new ac-
celerator microarchitectures, these models are designed anyhow
as part of the optimization process. Furthermore, accelerator
microarchitectures tend to have simpler control logic and have
a lot more regular structures than general-purpose processors
enabling a more straightforward comprehension of microarchi-
tecture features.

IV. PRELIMINARIES

We introduce formal concepts for our treatment of microar-
chitecture design. We use M , a finite set of variables over the set
of integers Z, to refer to the data space of a microarchitecture.
We assume M to be partitioned into two disjoint sets MG and
ML, i.e., M =MG ∪ML. We refer to MG and ML as global
and local memories respectively. Informally, MG and ML rep-
resent the architecturally and microarchitecturally visible state-
holding elements respectively.

The set I of instructions specifies the transformation of the
data space. Formally, an instruction is of the form

1) �v := F (�a), where �v is a finite-length vector of variables
over M and �a is a finite-length vector of arguments with
mixed variables and constants over M ∪ Z, called a com-
posite assignment or simply assignment, or

2) goto loc if C(�a), where loc ∈ N and C : N|�a| → B,
called a branch.1

We will use �d to denote �a if the latter does not contain any
variable from M . Function Rhs returns the set of variables in
�a in an instruction. Function Lhs return the set of variables in
�v for an assignment and [] for a branch. Note that composite
assignments integrate both assignment and arithmetic compu-
tations. We refer to an instruction as global if �v and �a contain
no variables from ML. Intuitively, global instructions refer to
architecturally visible machine components whereas local in-
structions can only refer to (and affect) only microarchitectural
components. In practice, if a (global) instruction is implemented

1We treat a branch instruction separately from other instructions because it
affects the control flow of the program execution which must be accounted
for when reasoning about program behavior. Furthermore, separating branches
enables effective comprehension of specific microarchitecture features that
affect control, e.g., branch prediction.
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Fig. 3. Step execution example. Execute one entry (assignment or branch)
from IQ or from IM [pc] if IQ is empty. In terms of the microarchitecture
example in Fig. 2, IM and IQ correspond to imem and Ipseq respectively.

by a sequence of micro-instructions, then some of the micro-
instructions could be local instructions. We use IG ⊆ I to refer
to the subset of global instructions in I .

A machine program (or simply, program) P is a triple
P � 〈IM, pc, IQ〉 where IM : N→ IG, pc ∈ N, and IQ is a
sequence [e1, . . . , ek] where each ei ∈ I . For simplicity of ex-
position, we assume that IM is a constant formalizing a read-
only instruction memory. However, the approach can be easily
generalized to account for a modifiable instruction memory.
When there is no ambiguity, we will use a concise definition
of a machine program P � 〈pc, IQ〉 throughout the paper.

Remark 3: The notion of “machine program” above as well
as the idea of program transformations introduced below are
analogous to, but different from, the traditional definition of
programs used in program analysis or compiler design com-
munities. Traditionally, one views a program as a static, finite
sequence of instructions. Our formalization augments this static
view with a view of a trace of a program as a dynamic stream
of instructions. In particular, it is convenient to think of the in-
structions in the IM to constitute the static instruction sequence
forming a program, while the instructions in IQ can be viewed
as a stream of instructions already “fetched” from IM .

We use |IQ|, IQ[i], and IQ[i..j] to denote the length, the
i-th instruction, and the subsequence of i-th to j-th instructions
of IQ respectively. For the latter, We will omit i or j if i= 1 or
j = |IQ|. We use IQ1 + IQ2 to denote the concatenation of se-
quences IQ1 and IQ2. The first instruction in the program, de-

noted as hd(P ), is defined as hd(P ) =

{
IQ[1] IQ �= []

IM [pc] otherwise

V. FORMAL FOUNDATION OF MICROARCHITECTURE DESIGN

We start with a few definitions to make explicit the notion of
program transformation. We then define semantics preservation
that forms the basis of our microarchitecture analysis.

We now formalize the step semantics of a program. The
definitions below are formalization of standard interpreter se-
mantics [37] adapted to our notation of data space and pro-
gram. Here, step execution returns the transformed machine
program after execution of one instruction. Fig. 3 illustrates an
example of a step depending on the state of the IQ and the
corresponding state update. If the instruction is a branch in-
struction and the condition evaluates to true, then IQ is emptied
to avoid speculative commit. Note that this formalization does

not preclude reasoning out-of-order or speculative executions.
In Section VIII we show how to formalize these operations.
However, it enforces the requirement that architecturally visible
commits are performed in program order.

Definition 1: (State). A state s of a microarchitecture is
a mapping s :M → Z

|M |. Let s[v], s[�a] denote the value of
variable v ∈M , the vector of values for vector �a in s. A state
transition is defined to occur from s to s′ through instruction
ins, denoted by {s}ins{s′}, if the following hold:

• Case 1: ins is an assignment �v := F (�a). Then s′ =
s[�v := F (s[�a])], where “:=” operator means substitution.
This can be also represented as s′ = eval(ins, s), where
eval(ins, s) means evaluation of ins in state s.

• Case 2: ins is a branch instruction goto loc if C(�a). Then
s′ = s.

Remark 4: The definition of state models architec-
tural/microarchitectural components that are not tied to the pro-
gram control. In particular, the formalization does not include
pc and IQ as part of the state definition but as part of definition
of the program. Doing so simplifies reasoning about programs
and program equivalences by treating the program itself and the
components involved in its control as one formal object. Note
that the objective of the foundation is to view microarchitecture
features as equivalence-preserving transformers of program,
and the definition of state is targeted to enable establishing of
the equivalence relation.

Definition 2: (Step Execution). A step-execution of program
P � 〈pc, IQ〉 in state s is program P ′ � 〈pc′, IQ′〉 and state s′,
denoted by 〈P ′, s′〉= step(P, s), such that {s}hd(P ){s′}, and

• Case 1 hd(P ) is goto loc if C(�a) and C(s[�a]) = true,
then pc′ = loc, IQ′ = [].

• Case 2: Otherwise, pc′ = pc, IQ′ = IQ[2..] when IQ �= []
and pc′ = pc+ 1, IQ′ = [] when IQ= [].

Definition 3: (Prefix Execution). A k-step prefix execution
of program P � 〈pc, IQ〉 in state s, denoted by 〈P ′, s′〉=
pstepk(P, s), is recursively defined as

• 〈P ′, s′〉= 〈P, s〉, if k = 0 or IQ= []
• 〈P ′, s′〉= pstepk−1(P ′′, s′′) and 〈P ′′, s′′〉= step(P, s)

for some program P ′′ and state s′′, otherwise.
Remark 5: Definition 3 is formalized to return the state after

execution of k (microarchitectural) steps. The condition IQ=
[] is included in Definition 3 to account for the following two
cases: (1) k > |IQ| or (2) IQ[i] is a branch instruction goto
loc if C(�a) for some i < k and C(si[�a]) is true where si is the
state at step i. In the latter case, IQ′ = [] and pc′ = loc.

Fig. 4 shows an example of a K-step execution. Informally, a
K-step execution is like partially flushing the IQ where at most
k entries are evaluated and stops when IQ= []. No instruction
is executed from IM . The example shows both cases where all
j ≤ k instructions are evaluated assuming no other instruction
from 2 to j − 1 updates A and B, or there are > k entries in
IQ resulting in entries remaining in the IQ after evaluating k
instructions.

Finally, we define program equivalence.
Definition 4: (Program Equivalence). Program P1 in state

s1 and program P2 in state s2 are equivalent, denoted by
〈P1, s1〉 ≡ 〈P2, s2〉, if
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Fig. 4. K-step prefix execution example. Executes min(|IQ|, k) entries
from the IQ.

Fig. 5. Execution equivalence example. P1 and P2 are equivalent after
stepping 3 times.

1) If IQ1 = IQ2 = [], then pc1 = pc2, s1[MG] = s2[MG],
2) If IQ1 �= [] or IQ2 �= [], then s1[MG] = s2[MG] and one

of the following must be true:
a) (P1 advances) IQ1 �= [] ∧ 〈P ′

1, s
′
1〉 ≡ 〈P2, s2〉,

b) (P2 advances) IQ2 �= [] ∧ 〈P1, s1〉 ≡ 〈P ′
2, s

′
2〉,

c) (Lockstep advance) 〈P ′
1, s

′
1〉 ≡ 〈P ′

2, s
′
2〉

where 〈P ′
1, s

′
1〉= step(P1, s1), 〈P ′

2, s
′
2〉= step(P2, s2).

Remark 6: Case 1 states that P1 and P2 are the same program,
and they start from the same architectural state. Case 2 reduces
two programs P1 and P2 to case 1 by executing the instructions
from the two programs such that the sequences of architecture
changes from the execution are the same under stuttering (one
of them may execute additional instructions from the memory
but not both). Fig. 5 shows an example of two programs P1 and
P2 where P2 more aggressively prefetches instructions into the
IQ are equivalent after stepping three times.

Remark 7: For the reader familiar with specification and
verification of distributed reactive systems, the notion above
is analogous to bisimulation equivalence under stuttering [38],
[39]. Bisimulation is a notion of correspondence where we
consider two systems equivalent when they produce the same
observable behavior at each transition. Stuttering relaxes the
bisimulation correspondence by requiring that the behaviors
match only on specific transitions (referred to as “commitment
steps”) while other transitions produce no change in the ob-
servable components. Our notion is similar to stuttering bisim-
ulation where the commitment steps correspond to updates to
architectural components of the states.

The following theorem is an easy consequence of the
definition.

Theorem 1: (Transitivity). If 〈P1, s1〉 ≡ 〈P2, s2〉 and
〈P2, s2〉 ≡ 〈P3, s3〉 where Pi � 〈pci, IQi〉 for i= 1, 2, 3, then
〈P1, s1〉 ≡ 〈P3, s3〉.

Fig. 6. Steps in the inductive proof of transitivity.

Proof: We prove by induction on the numbers of steps k and
m as defined in Definition 4 to establish 〈P1, s1〉 ≡ 〈P2, s2〉 and
〈P2, s2〉 ≡ 〈P3, s3〉.

Base case: k = 0, m= 0. By the first case of Defi-
nition 4, we have IQ1 = IQ2 = IQ3 = [], pc1 = pc2 = pc3,
and s1[MG] = s2[MG] = s3[MG]. Therefore, by Definition 4,
〈〈IM, pc1, []〉, s1〉 ≡ 〈〈IM, pc3, []〉, s3〉

Inductive case: Assume for all programs P1, P2, P3

that require ≤ k steps and ≤m steps to establish equiva-
lences 〈P1, s1〉 ≡ 〈P2, s2〉 and 〈P2, s2〉 ≡ 〈P3, s3〉, we have
〈P1, s1〉 ≡ 〈P3, s3〉. There are three subcases to consider:

• k + 1 steps and n≤m steps to establish 〈P1, s1〉 ≡
〈P2, s2〉 and 〈P2, s2〉 ≡ 〈P3, s3〉.

• n≤ k steps and m+ 1 steps to establish 〈P1, s1〉 ≡
〈P2, s2〉 and 〈P2, s2〉 ≡ 〈P3, s3〉.

• k + 1 steps and m+ 1 steps to establish 〈P1, s1〉 ≡
〈P2, s2〉 and 〈P2, s2〉 ≡ 〈P3, s3〉.

We will prove the first sub-case. The other two can
be proved similarly. Consider the two sequences of
advances in Fig. 6 that establish 〈P1, s1〉 ≡ 〈P2, s2〉 (left)
and 〈P2, s2〉 ≡ 〈P3, s3〉 (right). Let i, j > 0 be the steps
where 〈P i

2, s
i
2〉= step(P2, s2) = 〈P ′j

2 , s′j2 〉 (middle). Since
the two sub-sequences starting from 〈P i

1, s
i
1〉 ≡ 〈P i

2, s
i
2〉 and

〈P ′j
2 , s′j2 〉 ≡ 〈P ′j

3 , s′j3 〉 are of length ≤ k and ≤m respectively,
by the induction hypothesis, 〈P i

1, s
i
1〉 ≡ 〈P ′j

3 , s′j3 〉.
We now construct the sequence starting from pair 〈P1, s1〉

and 〈P3, s3〉 that first step-executes 〈P1, s1〉 until 〈P i
1, s

i
1〉

but keep 〈P3, s3〉 unchanged, and then step-executes 〈P3, s3〉
until 〈P ′j

3 , s′j3 〉 but keep 〈P i
1, s

i
1〉 unchanged. Then we have

sn1 [MG] = s′n3 [MG] for every pair 〈Pn
1 , s

n
1 〉 and 〈P ′n

3 s′n3 〉 in
this sequence. Therefore, by case 2 of Definition 4, 〈P1, s1〉 ≡
〈P3, s3〉.

The following two lemmas will be useful in verifying many
of the microarchitecture properties in Section VIII.

Lemma 1: (Common Prefix). Let P1 � 〈pc1, IQ1〉 and P2 �
〈pc2, IQ2〉 such that for some k ≤min(|IQ1|, |IQ2|),
IQ1[i] = IQ2[i] for all i≤ k. Then 〈P1, s〉 ≡ 〈P2, s〉 if
pstepk(P1, s)≡ pstepk(P2, s) for all state s.

Proof: The k-step prefix executions of both programs from
s will end up with the same end state following the lockstep
advances in Definition 4. Therefore the correctness can be es-
tablished by a simple induction on k.

Lemma 2: (Common Sub-State). Let s1 and s2 be two states
such that s1[v] = s2[v] for all v ∈ V where MG ⊆ V ⊆M . Let
P � 〈pc, IQ〉 be a program such that Rhs(ins)⊆ V for every
ins in IQ. Then 〈P, s1〉 ≡ 〈P, s2〉.
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Algo. 1: FETCH(P � 〈pc, IQ〉, s)
1 ins← IM [pc]
2 if ins.MATCH(goto loc if C(�a)) ∧BP (ins) then
3 ins← goto pc+ 1 if notC(�a)
4 IQ′ ← IQ+ [ins]
5 pc′ ← loc
6 else
7 IQ′ ← IQ+ [ins]
8 pc′ ← pc+ 1

9 return 〈pc′, IQ′〉

Proof: We prove by induction on |IQ|.
Base case: IQ= []. It follows case 1 of Definition 4.
Inductive case: assume the claim holds for all instruction

queues of length ≤ k. Consider an IQ with k + 1 instructions.
Let s′1 and s′2 be the two states after step-executing P in s1 and
s2. It is easy to see that s′1[v] = s′2[v] for all v ∈ V . Following
the hypothesis and case 2 (c) of Definition 4, the lemma holds
for IQ.

Definition 5: (Program Transformer). Let ℘ be the set of all
programs and S be the set of all states. Let T : S → ℘→ ℘ be
a function that translates a program to another program for a
given state. T is a program transformer, if for all s ∈ S, p ∈ ℘,
〈P, s〉 ≡ 〈T (s, P ), s〉.

VI. BASIC MICROARCHITECTURE FEATURES AS PROGRAM

TRANSFORMERS

A key contribution of our work is the observation that
microarchitectural features can be appropriately viewed as in-
cremental optimizations in processor design via program trans-
formation. The features covered in this section are ”basic”
microarchitectural features such as instruction fetch and data
forwarding. We will discuss more advanced features after for-
malizing compositional rules. Obviously, given the number of
sophisticated microarchitecture features available in a modern
microprocessor it is impossible to provide explicit analysis of
the entire spectrum of features.2 Instead we focus illustrating
the approach through a selection of representative features.

A. Instruction Fetch

We view instruction fetch as a program transformation that
updates IQ with the prefix of the program in IM pointed
to by pc. Algorithm 1 defines the corresponding microar-
chitecture operation.3 Here BP is a non-deterministic pred-
icate that predicts the branch will be taken or not. Note
that the non-determinism enables compositional verification
of any branch prediction algorithm independently from the
Fetch functionality.

2For simplicity of presentation, the formalization we show here is somewhat
simplified from the actual transformer implementations deployed in our case
studies. However, the proofs discussed here are generalizable to our more
elaborate transformation implementations.

3Throughout the paper, we use standard algorithmic constructs to define
the transformations, and show them as pseudocode. The pseudocode shown
here is an abstract representation of the transformer implementation.

Algo. 2: DATAFORWARD(P � 〈pc, IQ〉, s)
1 i← any number in [1, |IQ|]
2 ins← IQ[i]
3 foreach v ∈Rhs(ins) do
4 if v ∈ML ∧ ∀j. j < i =⇒ v /∈ Lhs(IQ[j]) then

ins← REPLACERHS(ins, v, s[v])

5 IQ′ ← IQ[..(i− 1)] + [ins] + IQ[(i+ 1)..]
6 return 〈pc, IQ′〉

Theorem 2: (Fetch is a program transformer).
Proof: Let 〈〈pce, []〉, se〉= pstep|IQ|(〈pc, IQ〉, s) and

〈〈pc′e, IQ′
e〉, se〉= pstep|IQ|(〈pc′, IQ′〉, s). Since IQ′ =

IQ+ [ins], we have se = s′e. By Lemma 1 we only need to
prove 〈〈pce, []〉, se〉 ≡ 〈〈pc′e, IQ′

e〉, se〉.
The case is straightforward if a branch is taken in IQ,

as IQ′
e = [], pce = pc′e. Otherwise, by Definition 2, pce = pc,

pc′e = pc′. There are two possibilities:
• pc′e = pc+ 1 and IQ′

e = [IM [pc]], or
• pc′e = loc, IM [pc] = goto loc if C(�a) and IQ′

e =
[goto pc+1 if not C(�a)].

For both cases, step(〈pce, []〉, se)≡ step(〈pc′e, IQ′
e〉, se).

B. Data Forwarding

The Fetch example, albeit illustrative, is rather simple. To
see the power of the program transfer view, it is illustrative to
consider data forwarding which reduces or eliminates the need
for instructions to stall for the output of previous instructions
to update the architecturally visible state components; instead,
output from the previous computation is fed directly as operand
for the subsequent instruction. Analysis of pipelines with data
forwarding involves subtle invariants since it must account for a
variety of data hazards, e.g., a significant part of Sawada’s proof
[4] involves defining invariants characterizing hazard-free data
forwarding. However, from the perspective of program trans-
formation, we can simply view it as an operation for constant
forwarding. Algorithm 2 defines the data-forwarding operation.

The algorithm selects an instruction ins from IQ and re-
places any local variable v (i.e. v ∈ML) from Rhs(ins) with
s[v] if v is not updated by any preceding assignment.

Theorem 3: (DataForward is a program transformer).
Proof: The proof is trivial if a branch is taken in step-

executing instructions in IQ[..(i− 1)]. Otherwise, let s′ be the
state after step-executing these instructions. by Lemma 1. we
need to prove 〈〈pc, [ins] + IQe〉, s′〉 ≡ 〈〈pc, [ins′] + IQe〉, s′〉
where IQe = IQ[(i+ 1)..]. Since steps 3− 4 in the algorithm
guarantee the step-executions of ins and ins′ in s′ result-
ing in the same state s′′, we need to prove 〈〈pc, IQe〉, s′′〉 ≡
〈〈pc, IQe〉, s′′〉 which is trivial.

VII. COMPOSITION OF PROGRAM TRANSFORMERS

A key property of program transformers is their composi-
tionality. Theorem 4 defines a set of composition rules. These
rules enable us to derive correctness of advanced microarchi-
tecture features by viewing them as a composition of simpler
transformers.
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Theorem 4: Let T1 : S → ℘→ ℘ and T2 : S → ℘→ ℘ be two
program transformers. Then the following are also program
transformers.

• Non-deterministic composition T = T1|T2;
• Sequential composition T = T1;T2;
• Star composition T = T ∗

1 ;
• Conditional composition T = if C(V ) then T1 else T2 for

any condition C(V ); and
• Parallel composition T = T1||T2, if range(T1) and

range(T2) are non-overlapping where range(Ti) is the
range of IQ for Ti.

Proof: Let P = 〈IM, pc, IQ〉 and s be a state.
Non-deterministic composition: Let P ′ = T (s, P ). By def-

inition, either P ′ = T1(s, P ) or P ′ = T2(s, P ). Since T1 and
T2 are transformers, 〈P, s〉 ≡ 〈P ′, s〉. Therefore, T = T1|T2 is
a transformer.

Sequential composition: Let P ′ = T1(s, P ) and P ′′ =
T2(s, P

′). Then 〈P, s〉 ≡ 〈P ′, s〉 and 〈P ′, s〉 ≡ 〈P ′′, s〉. By
Theorem 1, 〈P, s〉 ≡ 〈P ′′, s〉. Therefore, T = T1;T2.

Star composition: Obviously T 0
1 is a transformer as 〈P, s〉 ≡

〈P, s〉. Assume T k
1 is a transformer, then the sequential com-

position T k+1
1 = T k

1 ;T1 is a transformation.
Conditional composition: The proof is similar to non-

deterministic composition.
Parallel composition: Since range(T1) and range(T2) are

non-overlapping and since transformers do not change global
variables, T1||T2 will be equivalent to T1;T2.

Most composition rules have analogues in bisimulation
relation. One unique rule is parallel composition, which is cru-
cial for compositional analysis of microarchitecture with com-
ponents for performing overlapped concurrent executions. As
an example, consider the composition Fetch ||Rename ||OOO
(Out-Of-Order execution). Most modern pipeline functionality
includes this composition. In Section VIII we will prove that
Rename and OOO are program transformers. Since Fetch
appends new global instructions from IM to IQ, Rename only
works on global instructions in IQ, the parallel composition
rule enables us to derive this composition as a transformer as
long as OOO does not update any global instructions.

To understand the role of program transformations to enable
microarchitecture designs as incremental optimizations, con-
sider a microarchitecture design in Algorithm 3 that defines the
computation for a single “clock cycle”. It starts with a sequence
of program transformations through a composed program trans-
former in steps 1 - 7 and ends with executing the first N4

instructions from IQ in steps 9 - 17.
We can view these fragments in the algorithm as primi-

tive functionalities or building blocks for the microarchitec-
ture. For an actual microarchitecture design, high performance
is achieved by making these sequentially composed blocks
parallel through (1) segmenting (pipelining) IQ into non-
overlapping pipe stages, separated by latches, and assigning
blocks to operate on specific pipe stages, and then (2) imple-
menting the blocks for each pipe stage using one combinational
logic block between latches. Furthermore, all heavy computa-
tions will be performed as a part of transformations in steps
1 - 8. Steps 9 - 17 only execute instructions that are simple

Algo. 3: UARCHDESIGN(P � 〈pc, IQ〉, s)
1 P ′ ← P ;
2 repeat N1 times
3 P ′ ← FETCH(P ′, s)
4 repeat N2 times
5 P ′ ← RENAME(P ′, s)
6 repeat N3 times
7 P ′ ← OOO(P ′, s)
8 s′ ← s
9 repeat N4 times

10 if P ′.IQ �= [] then
11 ins← P ′.IQ[1]
12 P ′ ← 〈P ′.pc, P ′.IQ[2..]〉
13 if ins.MATCH(�v := F (�a)) then
14 s′ ← eval(ins, s′)
15 else if ins.MATCH(goto loc if C(�a)) then
16 if C(s′[�a]) then
17 P ′ ← 〈loc, []〉

18 return 〈P ′, s′〉

assignments of form �v = �a, and thus are called the retirement
stage.

Finally, note that the correctness holds independent of the
values of the parameters in the primitive operations (e.g., N1

through N4) or the specifics of the decisions for branch pre-
diction and instruction selection. These characteristics enable
a scalable modular design and verification of a complex mi-
croarchitecture. Unlike traditional verification approaches, the
only proof obligation in our framework entails showing the
correctness of the primitive application and the application of
composition rules; the rest is derived from the foundations
through composition rules.

VIII. ADVANCED MICROARCHITECTURE FEATURES

The program transformation view provides a powerful tool
for analyzing microarchitectures. In this section we will show
how to reconcile various advanced microarchitecture features
with this foundation. Note that these features are “advanced”
in the sense that they are more complex than the basic features
discussed in Section VI and formal verification of micropro-
cessors with these features have traditionally been difficult (see
Section II); however, they are well-established features and have
been deployed in processor architectures for several decades.

A. Data Localization

Data Localization is the approach to hide memory latency by
moving the data close to the computation ahead of time. There
are many ways to implement data localization. A common
form of data localization in OOO microprocessors is Register
Allocation and Renaming. Architecturally, when an instruction
refers to the data at a remote location, the processor transposes
the reference to a specific physical register on the fly [40]. We
incorporate this view as a program transformation by allocating
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Fig. 7. Register renaming example: (a) program for pow2(b) with an unrolled prefix in IQ; (b) program after register renaming for instructions 1,2,3 in
IQ; (c) program after executing instruction 1, data forwarding and register renaming to instruction 5.

Algo. 4: DATALOCALIZE(P � 〈pc, IQR + IQG〉, s)
1 if IQG = [] then return P
2 ins← IQG[1]
3 ρ←∅ � global to local mapping
4 foreach i ∈ [1, |IQR|] do
5 if IQR[i].MATCH(l := g) ∧ l ∈ML ∧ g ∈MG then

ρ[g]← l

6 〈loads, ins′, stores〉 ← 〈∅, ins, ∅〉
7 foreach g ∈ RHS(ins) do
8 if g /∈ domain(ρ) then
9 l← any v ∈ML : v /∈ range(ρ) � allocation

10 ρ[g]← l
11 loads← loads+ [l := g]

12 ins′ ← REPLACERHS(ins′, g, ρ[g])

13 foreach g ∈ LHS(ins) do
14 l← any v ∈ML : v /∈ range(ρ) � allocation
15 ins′ ← REPLACELHS(ins′, g, l)
16 stores← stores+ [g := l]
17 ρ[g]← l

18 IQ′
R ← IQR + loads+ [ins′] + stores

19 return 〈pc, IQ′
R + IQG[2..]〉

a temporary variable from local memory ML to locally refer-
ence a member of MG. Scratch Buffers constitute another form
of data localization where the data for computations are first
loaded from memory to scratch buffers where subsequent com-
putations can load data and store (intermediate) results more
efficiently. The final results are then stored back to memory.
Finally, the entire Hierarchical Cache System constitute a form
of data localization albeit at a much larger scale. The invariant
maintained by the cache system ensures that the computation
can get data from any cache line in the system as long as it
maintains the same data in the corresponding memory location.
Obviously it is much more complex to manage the invariant
and to prevent data access during transient phases through the
implementation of a protocol such as cache coherence.

Remark 8: Establishing data localization as a transformer
allows its use as a building block to construct the cache system
in a correct-by-composition way. Furthermore, it enables the
separation of the concerns in design and refinement. In the case
of cache coherence, for example, our foundation provides a
generic formalization of the specification of cache coherence

Fig. 8. Steps in the localization proof.

protocol as necessary to enable composition with other microar-
chitecture features for overall microarchitecture correctness.

Algorithm 4 defines the micro-architecture operation for the
data localization. It assumes that IQ is partitioned into two parts
IQR + IQG where the tail part IQG before renaming contains
only global instructions, and the head part IQR after renaming
contains no global instructions.

Steps 3-5 build the most recent renaming ρ from a global
variable to a local variable. This is necessary as a global variable
may get renamed multiple times during its lifetime in IQ.
Steps 7-12 rename every global variable g in RHS(ins) to its
corresponding local variable ρ[g] and allocate one l if no such
local variable exists. In the latter case, the data stored in g will
be pre-loaded to l. Similarly, Steps 13-18 rename every global
variable g in LHS(ins). Doing so will make all computations
depend only on local variables.

Remark 9: To optimize searches in steps 4 - 5 of Algorithm 4
as well as in step 4 of Algorithm 2, a data structure called RAT
(Register Aliasing Table) is created to keep track of the most
recent renaming of a global variable and the pool of free local
variables. RAT is updated during this algorithm and the step
executions in Algorithm 3.

Theorem 5: (DataLocalization is a program transformer).
Proof: Consider the four stages of advances in Fig. 8. In

stage 1, the instructions in IQR are executed in both pro-
grams from state s, resulting in the same state s′. In stage
2, the instructions in load in the transformed program are
executed from s′, resulting in state t′. For every global vari-
able g, s′[g] = t′[g]. Further, every local variable l associated
with a global variable g in Rhs(ins), t′[l] = t′[g]. In stage
3, ins and ins′ are executed from s′ and t′ respectively. For
every global variable g, if it appears in Lhs(ins), t′′[l] = s′′[g]
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Algo. 5: OOO(P � 〈pc, IQ〉, s)
1 i← FINDANY(IQ, λ. ins⇒ RHS(ins) = ∅)
2 if i= nil then return P
3 ins′ ← REPLACERHS(IQ[i],EVALRHS(IQ[i], s))
4 IQ′ ← IQ[..(i− 1)] + ins′ + IQ[(i+ 1)..] � replace

instruction
5 return 〈pc, IQ′〉

where l is the local variable associated with g. Otherwise,
t′′[g] = s′′[g]. In stage 4, the instructions in store are executed,
resulting in the same global memory content in s′′ and t′′′.
By Lemma 2, 〈〈pc, IQG[2..]〉, s′′〉 ≡ 〈〈pc, IQG[2..]〉, t′′′〉. By
Definition 4, the original program and transformed program
are equivalent.

Fig. 7 shows how this works with the example program to
compute the power of 2. The data localization transformation
creates a temporary local variable (in this case t1, t2, t3,
t4) for each global variable (r1, r2, r3, r4 respectively)
and modify each reference to a global variable in subsequent
instructions in IQ to its associated local variable (e.g., replace
r2 and r3 in instruction 4 with t2 and t3 in (b)).

B. Out-of-Order Execution

Out-of-Order (OOO) execution is one of the most complex
features in modern microarchitectures. It enables execution of
instructions in a sequence different from program order based
on the availability of input operands and execution unit re-
sources. From the perspective of verification, it complicates
notions of correspondence and proof strategies, e.g., Burch and
Dill notions are not applicable for OOO microarchitectures.
However, the program transformation view accounts for OOO
in a straightforward manner by viewing it as an optimization
for evaluating instructions whenever an instruction is “ready”,
i.e., when its operands have been evaluated to a constant. For
instance, in Fig. 7(c), instruction 5 is ready and can be sim-
plified through OOO transformation. Algorithm 5 provides a
formal description of the transformation. When all variables
in the right-hand-side of an instruction are constants, then this
instruction is “ready”. Its right-hand-side will be replaced with
the evaluation of the operations. In real world implementations,
the ready instructions will normally be put into a ready queue,
scheduled by the scheduler, and replaced once the simplification
is done.

Theorem 6: (OOO is a program transformer).
The proof of the theorem is straightforward as the only dif-

ference between IQ and IQ′ is the instruction IQ[i] is replaced
by ins′ where the right-hand-side function with only constants
is evaluated and replaced by the result.

Remark 10: In practice, we partition this algorithm into two
parts: (1) we schedule the instructions into a ‘ready’ queue;
and (2) we pick the first instruction from the queue, and eval-
uate/execute the instruction. The proof of this more advanced
algorithm would be similar, since any instruction in the ‘ready’
queue will have its right-hand-side variables being constants.

Fig. 9. An example function in Dafny to find the maximum from a given
non-empty sequence of integers.

Remark 11: The OOO transformer can be extended to sup-
port superscalar architecture with multiple execution units. In-
stead of a single ‘ready’ queue, the idea is for each unit to
maintain a linear sequence of instructions in its local instruction
memory with its own program counter. An instruction is sent
to a unit based on the type of instructions the unit supports
and its availability, if the instruction is ready or it is only data-
dependent to an instruction that is already sent to the unit; an
instruction can also be sent to a different unit as long as a
barrier instruction is inserted to ensure that all the instructions it
depends on are executed before its execution. Correspondingly,
OOO can also be extended to co-processors and accelerators
where more complex computations are offloaded.

IX. MECHANIZATION IN DAFNY

We have mechanized the foundations in Dafny [8]. In this
section, we provide an overview of the mechanization. The goal
is not to explain the mechanization in elaborate detail but rather
to give the reader familiar with formal semantics and proof
mechanization a flavor of how to mechanize the foundations in a
typical proof assistant. The reader interested in the foundations
but not in the mechanization can skip this section without loss
of continuity.

Dafny is a verification-aware programming language with
built-in constructs for specification. It allows users to write
specification, implementation and proofs of programs. Fig. 9
shows an example function that finds the maximum from a
given a non-empty sequences of integers. Line 2 hints Dafny to
prove the termination with this recursive function. Line 3 shows
the precondition, which needs to be satisfied when calling this
function. Line 4-5 shows the postconditions to hold upon the
completion of this function. Dafny will verify if the function
body (Line 7-11) indeed correctly implements the specifica-
tion. The Dafny static program verifier uses Z3 Satisfiability
Modulo Theories (SMT) solver to verify the correctness of the
programs. Dafny is also able to generate executable (in C++,
Go, C#, etc.) models after the verification, which is helpful for
simulating our processor design with concrete instructions.

Fig. 10 shows the formalization of the foundational concepts.
We define memory as a map from addresses to memory element
MemElem. An address can be either local or global, defined
as LAddr or GAddr, respectively. An instruction can be an
arithmetic instruction Arith, a Move, an unconditional jump
Jmp, conditional jump instructions JZ and JNZ, and a NOP. A
program state consists of a local memory and a global memory.

Authorized licensed use limited to: University of Florida. Downloaded on February 08,2024 at 15:42:20 UTC from IEEE Xplore.  Restrictions apply. 



288 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024

Fig. 10. Formalization of program semantics foundation in Dafny. (a) Foundational definitions formalizing abstract machine. (b) Formalization of step
and prefix execution steps.

Fig. 11. Mechanization of the proof of Theorem 2 in Dafny.

And finally, as defined in previous sections, a program has in-
struction memory, a program counter, and a sequence of instruc-
tion that serves as iq. Note that the predicate well_formed
ensures that pc is valid in the instruction memory, and all the
instruction memory only contains global instructions.

It is instructive to see how to mechanize program transformer
proofs. In Fig. 11, theorem fetch_is_transformer

proves that function fetch is a valid transformer (Theorem 2).
A key lemma is lemma_common_prefix which is the Dafny
formulation of Lemma 1. The proof proceeds as follows. Since
fetch only appends an instruction to the IQ, p and pf share
the common prefix (of size k, where k is the size of the IQ
in p) in their IQs. We “flush” k instructions in their IQs
with steps. By lemma lemma_common_prefix, they should
produce the same state (s′ = sf ′). After that, the IQ in p′

should be empty, and the IQ in pf ′ is either empty (due to
a branch taken) or of size 1. If it is empty, its pc must be
the same as the pc in p′, since they must have executed the
same branch instruction. Otherwise there is no taken branch,
therefore the pc is unchanged. We further “step” both programs,
noting that the instruction being executed must be p.IM [p.pc],
therefore, 〈p′′, s′′〉 ≡ 〈pf ′′, sf ′′〉. According to the definition
of prog_equiv, 〈p′, s′〉 ≡ 〈pf ′, sf ′〉. Finally, using lemma
lemma_common_prefix we conclude 〈p, s〉 ≡ 〈pf, s〉.

X. CASE STUDY: CORRECT-BY-CONSTRUCTION SUPERSCALAR

VTA MICROARCHITECTURE

In this section, we applied the program transformation
foundations to develop a correct-by-construction superscalar
microarchitecture implementation of the Versatile Tensor Ac-
celerator (VTA). The focus is not to cover the formalization in
full detail but to give a flavor of the microarchitecture so that
the reader can appreciate the subtleties involved and the role of
our new foundations to conquer them.

A. Microarchitecture Feature Addition

We will elaborate the four stages in Fig. 1 in Section III. Note
that VTA accelerates a sequence of two-dimensional arbitrary-
sized tensor computations. The ISA of the accelerator supports
tensor operations such as GEMM, which performs matrix-
matrix multiplication over an input tensor and an weight tensor.

Authorized licensed use limited to: University of Florida. Downloaded on February 08,2024 at 15:42:20 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: CORRECT-BY-CONSTRUCTION DESIGN OF CUSTOM ACCELERATOR MICROARCHITECTURES 289

Algo. 6: Gemm(itensor, wtensor, otensor,m, n, k)

1 r ← REDUCEAXIS(0, k)
2 ot← COMPUTE((m,n), λ x, y :

SUM(itensor[x, r] · wtensor[r, y], r))
3 otensor ← COPY(ot,m, n)

Algo. 7: Lgemm(i, w, o,m, n, k)

1 it← Copy(ITensorBuf [i],m, k)
2 wt← Copy(WTensorBuf [w], k, n)
3 r ← REDUCEAXIS(0, k)
4 ot← COMPUTE((m,n), λ x, y : SUM(it[x, r] · wt[r, y], r))
5 OTensorBuf [o]← COPY(ot,m, n)

Stage 0: ISA Abstraction Algorithm 6 shows the formal
semantics of the GEMM instruction in the VTA ISA as it is
executed by the EXEC core.4 Here itensor, wtensor,
otensor are the memory addresses of the input, weight and
output tensors of sizes m · k, k · n and m · n, respectively.

Stage 1: Sequential VTA with Fetch and Data Local-
ization (SFL) This feature introduces local buffers to store
instructions and data and hide memory latency. For instructions,
we apply the Fetch and Data Localization transformers. For
data, we introduce three local buffers ITensorBuf of size
I , WTensorBuf of size W and OTensorBuf of size O to
the local storage rf to store arrays of input, weight and output
tensors respectively. The instruction LGEMM is similar to GEMM
but performs the multiplication over an input tensor and weight
tensor from the local buffers, as shown in Algorithm 7. Sup-
porting LGEMM requires three additional instructions ILOAD,
WLOAD, and STORE. The operational model of these instruc-
tions is obvious, e.g., ILOAD itensor, i, m, k loads
an input tensor itensor from the main memory into entry i of
ITensorBuf.

Stage 2: Sequential VTA with Barrier Insertion (SBI)
To enable downstream concurrent executions, this feature in-
serts barrier/release instructions: a LG_BARRIER before an
LGEMM and corresponding LG_RELEASE after the last LOAD
that loads the data for LGEMM. It also inserts barrier/release in-
structions: a GS_BARRIER before an STORE and correspond-
ing GS_RELEASE after the LGEMM that produces the result for
the STORE.

Stage 3: Sequential VTA with BMM Sequencing (SBS)
Since only fixed-size block matrix multiplication (BMM) can
be implemented in hardware, this feature introduces a BMM-
Sequence module (Algorithm 8) to decompose a GEMM
computation into a semantically equivalent sequence of BMM
and ACC (ACCumulate) computations, based on block matrix
multiplication framework. Let the sizes of the fixed-size tensors
for BMM be fm, fn, and fk. The instruction BRESET sets
the (s, z)-block of entry ins.o in OTensorBuf to 0. The
instruction BMMACC performs a BMM operation on the (x, y)-
block of entry ins.i in ITensorBuf and (y, z)-block of entry
ins.w in WTensorBuf, and then adds the result to the (s, z)-
block of entry ins.o in OTensorBuf.

4We use the term EXEC core to mean a processing element that performs
an arithmetic-logic functionality.

Algo. 8: BMMSequence(IQ, uIQ)

1 ins← IQ.deq()
2 for x← 0 . . . ins.m/fm do
3 for z ← 0 . . . ins.n/fn do
4 uIQ.enq(INSTR(BRESET ins.o, x, z))
5 for y ← 0 . . . ins.k/fk do
6 uIQ.enq(INSTR(BMMACC, ins.i, x, y, ins.w, y, z,

ins.o, x, z))
7 end
8 end
9 end

Algo. 9: Decode(IQ, uIQ)

1 ins← IQ.deq()
2 for x← 0 . . . ins.m/fm do
3 for z ← 0 . . . ins.n/fn do
4 uIQ.enq(INSTR(BRESET))
5 for y ← 0 . . . ins.k/fk do
6 uIQ.enq(INSTR(IBLOAD, ins.i, ins.x, ins.y))
7 uIQ.enq(INSTR(WBLOAD, ins.w, ins.y, ins.z))
8 uIQ.enq(INSTR(BGEMMACC))
9 uIQ.enq(INSTR(BSTORE, ins.o, ins.x, ins.y))

10 end
11 end
12 end

Fig. 12. BMM module refinement.

Stage 4: Concurrent VTA with Multiple Cores (CMC)
Here, the EXEC_LS core is replaced with a Schedulemodule
and three concurrent EXEC_LS cores, responsible for LOAD,
STORE and GEMM operations. The Schedule module re-
ceives a stream of instructions and issues them to corresponding
cores. The barrier/release instructions synchronize executions
on cores. Since the cores run dedicated functions and GEMM
only performs fixed-size BMM computations, they can be sig-
nificantly simplified (Fig. 2 stage 1).

B. Refinement

Each feature can be further optimized for software or hard-
ware implementation. For example, the BMM sequencing and
computation in Algorithm 8 (steps 4 and 6) is refined to Al-
gorithm 9 (steps 4 and 6-9) by introducing fixed-size blocks
Input Block of size fm · fk, Weight Block of size
fk · fn, and Output Block of size fm · fn between the
local tensor buffers, and the BMM module (Fig. 12) and five
new instructions IBLOAD, WBLOAD, BSTORE, BRESET and
BGEMMACC operate on these blocks, e.g., IBLOAD i, x, y
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loads a block (x, y) of size (fm, fk) from tensor i in ITensor-
Buf to Input Block.

C. Design, Implementation and Verification

Both phases of the VTA design were done using HeteroCL
[41]. HeteroCL is a programming infrastructure composed of a
Python-based domain-specific language (DSL) and a compila-
tion flow. HeteroCL supports two back-ends: the generation of
the LLVM code from the feature modules to be implemented
as the compiler for the accelerator, and the generation of syn-
thesizable C from the feature modules to be implemented as
the hardware through HLS. Our approach enables rapid end-
to-end design exploration and seamless software and hardware
co-design.

Ensuring correctness of the design entails showing that the
operations introduced in each step are indeed program trans-
formers. The composition rules from Section VI then complete
the proof. No additional hand-crafted invariant is necessary.
We are also developing an automated sequential equivalence
checking flow for discharging program equivalence proof obli-
gations [42].

XI. CONCLUSION AND FUTURE WORK

We have developed a foundation for microarchitecture veri-
fication based on program transformations, that permits incre-
mental analysis of microarchitecture components. We showed
how various microarchitecture features can be viewed as pro-
gram transformers, and developed compositional rules to en-
able correct-by-construction implementations. In addition to
facilitating intuitive specifications, the approach enables veri-
fication of microarchitectures with advanced features through
automated tools, while obviating the need for hand-crafted
invariants. We discussed how to use the approach for auto-
mated verification of a superscalar implementation of VTA.
We are aware of no other frameworks for analysis of mi-
croarchitectures of such complexity without extensive man-
ual intervention. The foundations foster correct-by-construction
design by progressively optimizing and incrementally verifying
individual features.

We are applying the same foundations for provably-correct
design of a Fully Homomorphic Encryption accelerator. In fu-
ture work, we plan to design a superscalar RISC-V processor
and extend the foundations for SoC designs.
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