
112

ObNoCs: Protecting Network-on-Chip Fabrics Against

Reverse-Engineering Attacks

DIPAL HALDER, MANEESH MERUGU, and SANDIP RAY, University of Florida, USA

Modern System-on-Chip designs typically use Network-on-Chip (NoC) fabrics to implement coordination

among integrated hardware blocks. An important class of security vulnerabilities involves a rogue foundry

reverse-engineering the NoC topology and routing logic. In this paper, we develop an infrastructure, ObNoCs,

for protecting NoC fabrics against such attacks. ObNoCs systematically replaces router connections with

switches that can be programmed after fabrication to induce the desired topology. Our approach provides

provable redaction of NoC functionality: switch configurations induce a large number of legal topologies,

only one of which corresponds to the intended topology. We implement the ObNoCs methodology on In-

tel Quartus™ Platform, and experimental results on realistic SoC designs show that the architecture incurs

minimal overhead in power, resource utilization, and system latency.

CCS Concepts: • Security and privacy→ Hardware reverse engineering;

Additional Key Words and Phrases: Hardware security, obfuscation, supply-chain attacks, communication

fabrics

ACM Reference format:

Dipal Halder, Maneesh Merugu, and Sandip Ray. 2023. ObNoCs: Protecting Network-on-Chip Fabrics Against

Reverse-Engineering Attacks. ACM Trans. Embedd. Comput. Syst. 22, 5s, Article 112 (September 2023),

21 pages.

https://doi.org/10.1145/3609107

1 INTRODUCTION

System-on-Chip (SoC) designs are architected by integration of predesigned hardware blocks,
— referred to as “Intellectual Properties” or “IPs”, — which communicate through a variety of
Network-on-Chip (NoC) fabrics to realize the system functionality. The NoC fabrics realize
on-chip communication using a collection of routers connected to form a topology optimized for
the workload of the targeted SoC. The NoC fabrics have the advantage of being more scalable and
power-efficient than traditional bus-based communications and have proliferated significantly in
recent years as central coordination vehicles in SoC designs.

A sensitive security asset in NoC-based designs is the topology of the NoC itself. Reverse-
engineering the NoC topology enables a rogue entity to infer a variety of system-level parameters

This research has been partially supported by the Defense Advanced Research Projects Agency under the SAHARA Pro-

gram, Contract No. HR0011-21-3-0001.

Authors’ address: D. Halder, M. Merugu, and S. Ray, University of Florida, Gainesville, FL, USA, 32611; emails: {dipal.halder,

maneesh.merugu}@ufl.edu, sandip@ece.ufl.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2023/09-ART112 $15.00

https://doi.org/10.1145/3609107

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

https://orcid.org/0000-0003-2593-0493
https://orcid.org/0000-0002-0124-8839
https://orcid.org/0000-0002-8671-5052
https://doi.org/10.1145/3609107
mailto:permissions@acm.org
https://doi.org/10.1145/3609107
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609107&domain=pdf&date_stamp=2023-09-09

112:2 D. Halder et al.

Fig. 1. NoC interconnect transformation topology obfuscation. (a) An NoC-based SoC Design Example with

a simple Tree Topology. (b) Transformation of the outgoing edge of router R1.

of the SoC, including the targeted latency for a variety of inter-IP communications on different
workloads, sensitivity of communication at different life cycles, etc. On the other hand, SoCs to-
day are designed and fabricated through a complex, globally distributed supply chain, which in-
cludes foundries, packaging, assembly, testing facilities, etc. A rogue player in this supply chain
can perform reverse-engineering attacks, i.e., reconstruct the NoC topology and parameters (see
Section 2.3). The reverse-engineering can target a layout-level design of the SoC (in case of a
foundry) or a fabricated wafer or chip (in case of assembly, packaging, and testing facility). It is
crucial to protect such develop techniques to protect NoC topologies from reverse-engineering in
such untrusted facilities.

In this paper, we address this security problem through a novel obfuscation technology to
conceal the topology of NoC interconnects in SoC designs. Given an NoC interconnect, our
framework ObNoCs enables systematic transformation of router ports in the interconnect with
programmable switches. The switches can be configured to realize a variety of topologies after
fabrication by programming a specific set of state elements, only one of which corresponds to
the original topology of the fabric. We refer to the switch configuration corresponding to the
original topology as the activation package. We show how to implement this approach with low
overhead using a collection of multiplexers controlled by programmable registers. The ObNoCs
methodology has been implemented on top of Intel™ Quartus™ platform [2], and our experiments
on realistic SoC designs show that the overhead of ObNoCs in power or resource utilization is
minimal.

In this section, we first provide a toy motivational example to illustrate the key idea of ObNoCs.
We then discuss the contributions of the paper in greater detail.

1.1 Motivational Example

Consider the SoC design shown in Figure 1(a). It includes an NoC with five routers organized in
a simple tree network. Suppose we want to redact the connection R1 → IP6, Figure 1(b) shows
the method to transform this connection. In particular, R1 is connected to the input of a 1 × 4
demultiplexer and the output of the demultiplexer is connected to the four different hardware
blocks. We call this circuitry the DEMUX switch. The control of the DEMUX switch is connected
to a register that can be programmed after fabrication, and the control bits determine which IP is
actually connected to R1 in this port. If the register is programmed with the bits 00 then R1 would
be connected in this port to IP6 which corresponds to the original topology. Note that each pattern

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

ObNoCs: Protecting Network-on-Chip Fabrics Against Reverse-Engineering Attacks 112:3

Fig. 2. Example of custom MUX based transformation for outgoing signals of Router1 to IP6, Router 3, Router

4, and Router 5.

of bits from 00 through 11 corresponds to some connection, e.g., 01 would correspond to R1 → R3

and 10 to R1 → R4.
Figure 2 shows how the transformation above would be implemented for router R1. In particular,

we exercise 4 × 1 MUX to achieve a MUX-DEMUX based switch for each port of the router that
we need to redact. This makes the architecture of ObNoCs 2-stage where the first stage acts as the
DEMUX switch and the second stage as the MUX switch. The control bits for this MUX-DEMUX

switch are connected to a register which can be programmed at runtime.
From the example, it is clear that the NoC obfuscated by ObNoCs would have the same topo-

logical behavior as the unobfuscated NoC if the “right” control bits are provided. We refer to this
bit pattern as activation package. On the other hand, the assignment of the activation package bits
to the register only happens after the fabricated SoC is returned to the OEM from the foundry;
when the SoC is in an untrusted facility (e.g., foundry, assembly, or test), the activation package
is not available. Furthermore, other bit patterns in addition to the activation package also corre-
spond to other perfectly viable NoC topologies; indeed, without access to the activation package,
there is no way to decide which one of the viable topologies was the one actually intended by
the designer. We make this statement formal in Section 4. Correspondingly, a facility attempting
to reverse-engineer the SoC does not have a way to determine the correct topology (among the
viable ones) without access to the activation package.

1.2 Contributions of the Paper

There has been significant recent research on hardware obfuscation. We recount some of this work
in Section 6. A popular approach for hardware obfuscation is logic locking, where a hardware logic
design is extended with a dedicated locking circuitry such that a correct output is produced only
after a special bit sequence (or “activation package”) has been provided. ObNoCs can be viewed as
a focused locking technique specifically targeted for NoC interconnects. However, there are impor-
tant differences between traditional logic locking and ObNoCs. First, logic locking has been gener-
ally targeted for IP-level designs. Since the traditional locking circuitries incur significant overhead,
the cost of applying it to a complete SoC would be prohibitive. Furthermore, logic-locking tech-
niques have been shown to be vulnerable to a variety of attacks [14]. In contrast, ObNoCs provides

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

112:4 D. Halder et al.

provable protection against reverse-engineering attacks from an adversary without access to the
activation package.

The paper makes the following important contributions.

• To our knowledge, ObNoCs represents the first obfuscation methodology for system-level
interactions of SoC designs.
• ObNoCs realizes transformation of interconnect topology through a novel switching archi-

tecture that systematically redacts connection structures using programmable MUXs.
• Our methodology provides provable assurance of protection of obfuscated topologies against

reverse-engineering attacks.
• We demonstrate through extensive experimental results that the methodology incurs min-

imal overhead in power and resource utilization and minimal impact on timing and path
delay on realistic SoC designs.

The remainder of the paper is organized as follows. Section 2 discusses the relevant background.
Section 3 describes the ObNoCs obfuscation architecture and Section 4 provides a security analysis.
We discuss experimental results in Section 5. We discuss related work in Section 6 and conclude
in Section 7.

2 BACKGROUND

2.1 NoC Fabrics

The primary coordination mechanism for IPs in an SoC is message-based communication. Conse-
quently, the communication fabrics constitute a crucial component of an SoC design. Traditional
communication fabrics used point-to-point, crossbar, or bus architectures. More recently, NoC fab-
rics have gained popularity in industrial SoCs. An NoC involves a collection of routers connected
to realize a target topology. Many industrial SoC designs make use of a tree topology, although
other networks such as cycle, mesh, or torus are also in use [1]. Routers in an NoC typically in-
clude configurable routing tables which can be reconfigured if necessary by the operating system
at boot-time. A key advantage of NoC architecture is the flexibility provided in implementing
power management with low overhead as it is possible to simply shut off (or reducing high-speed
functionality) routers in the sub-network when message communication through the sub-network
is reduced. Note of course that these benefits do come with a number of challenges, including com-
plex optimization requirements for achieving power utilization, fault tolerance, quality of service
(QoS), and CAD support for NoC design [17]. For instance, to address the challenge of high through-
put performance, Pathania et al.[29] introduced a unique topology-based performance heterogene-
ity which exploits many-core heterogeneity to extract more performance. Indeed, our work also
accounts for resource utilization as an overhead metric to trade off for achieving security goals.

2.2 SoC Supply Chain Security

Semiconductor design has evolved over the past decade into a global enterprise incorporating
3PIP (third-party IP) vendors, IC design houses, fabrication labs, and testing facilities dispersed
over multiple countries and continents. The globalization in the supply chain has been driven by
a number of factors, including aggressive time-to-market requirements, miniaturization of VLSI
technology, increased fabrication and validation costs, etc. In particular, the exponential shrinkage
of transistor nodes over the past decades has enabled the IC designers to pack complex, multi-core
and many-core designs with advanced performance in area and power-constrained chip designs,
with a resultant increase in the price of fabrication. As a result, a majority of the semiconduc-
tor companies are going fabless and outsourcing chip fabrication to globally distributed remote
foundries. An unfortunate upshot is that it is possible for a rogue foundry to mount a variety of at-

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

ObNoCs: Protecting Network-on-Chip Fabrics Against Reverse-Engineering Attacks 112:5

Fig. 3. ObNoCs implementation environment in Quartus Prime and Platform Designer.

tacks subverting the design and production of the system. One class of attacks involves alteration
of the design by inserting malicious Trojan circuitry. Another class of attacks includes reverse
engineering, possibly targeting the entire SoC or some of the key IPs. Other supply chain attacks
include cloning, piracy, counterfeiting, recycling, and overproduction.

2.3 Reverse-Engineering Attacks

Reverse engineering is the technique of extracting data from a chip by dissecting its functional
elements and constituent parts. In the context of NoCs, the goal of the reverse-engineering attacks
is to extract information of the NoC topology from an SoC implementation (either as netlist or
as a fabricated silicon). Although there have not been dedicated techniques specifically targeted
to reverse-engineer NoC topologies, this can be accomplished by common methods such as
imaging, side-channel analysis, and micro probing all of which have been extensively researched.
Torrance et al. have discussed several types of reverse engineering, of which the products are
disassembling, system-level analysis, and circuit extraction in [42]. Gomez et al. described a
method that uses image processing to recreate a chip’s gate netlist after it has been decapped and
delayered. Using this method, the whole netlist is rebuilt by teaching an image processing tool
to identify common cell layout patterns and extract routing information [16]. Additionally, there
are purely algorithmic ways to reverse engineering digital circuits for the purpose of inferring
a high-level netlist with components like register files, adders, and counters from unstructured
netlists. For instance, Subramanyan et al. [41] segmented the netlist into potential/candidate
modules and by determining functionality using methods akin to design synthesis. The goal
is to make it easier for a human analyst to comprehend the functionality of an unstructured
netlist by identifying as many components as possible. Holler et al. [18] describe a method that
combines image processing and machine learning to improve the effectiveness and precision of
reverse engineering procedures. Botero et al. have used machine learning algorithms to recognize
patterns and categorize the parts, while image processing techniques can be used to extract
features from photos of the hardware [9]. Recently, there has also been work on discovering the
algorithms to find the specification of the extracted design [8].

2.4 Quartus Environment Basics

Although the ObNoCs infrastructure is independent of the underlying framework used for design-
ing the NoCs being obfuscated, the platform is integrated with the Intel Quartus environment and
all SoCs discussed in this paper are designed in Quartus. Quartus is a programmable logic device
design software targeted for the Intel FPGA platform. It is an effective tool for creating digital
circuits and systems on chips in the realm of embedded systems. Design entry and verification,
synthesis, place-and-route, time analysis, and programming are among the features that it offers.
The SoC’s size, performance, and power consumption can be improved by placing and routing

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

112:6 D. Halder et al.

digital circuits more efficiently thanks to the tool’s sophisticated algorithms. However, it can
be complex to use and requires significant computational resources. Figure 3 shows the general
Quartus environment including Platform Designer. The Intel Quartus Prime software includes
Platform Designer, which offers a user-friendly environment for creating and modifying
SoCs. It has an Intel IP library that can be used to create any SoC design with the ability to
add custom logic and set up interfaces in Platform Designer. Along with options for system
configuration and optimization, Platform Designer offers the flexibility to add any Intel out-
side IP to the design. Platform designer automatically creates the NoC interconnect during
SoC generation. The number of routers inside the NoC interconnect varies with the size of
the SoC.

3 ObNoCs ARCHITECTURE

3.1 MUX Insertion Methodology

Our motivating example in Section 1.1 identifies the key ingredients of the ObNoCs methodology.
ObNoCs takes an SoC design (typically in RTL) together with user directives for routers targeted
for obfuscation. The output of the ObNoCs transformation is a transformed design with the routers
obfuscated through redaction using the MUX-DEMUX switches as discussed above.

Algorithm 1 defines the procedure for inserting the MUX-DEMUX switch at each router
R. Roughly, for each Si such that there is a link R → Si and each Di such that there is a
link Di → R, we instantiate a programmable MUX for each end of the router links. Here the
function RandomizeConnections introduces non-determinism in connecting the outputs of a
MUX, e.g., in our motivating example, it will enable us to non-deterministically map the four
candidate blocks to the four outputs of the DEMUX switch for R1. Finally, for each MUX insertion,
Algorithm 1 additionally records the bit pattern that must be loaded to the control register to
recover the original topology. For the configuration of the MUX on the Source side as mentioned
in Algorithm 1, each input of the generated MUX (MUXR_Si

) would be connected to all the
signals of the Router outputs R[Si]. The MUX output would be appended to a custom array
MUX_out_list, which would serve as inputs to the Destination MUX’s (MUXR_Di

). For the correct
transformation involving the communication links, the MUX select lines have to be configured
accordingly, for which the correct configuration for each Source MUX is stored in a variable PR i ,
with the input Source signal, the intended destination signal along with the connections of the
source MUX (ini , Si ,Di , MUXR_Si

[out]), respectively. Using a RandomizeConnections function,
the input signals of the source MUX are randomized, to increase the uncertainty of retracing
in case of reverse engineering in a brute force attack scenario. The correct MUX configuration,
using the select lines would be retrieved by the array index i.e.the position of the actual input
signal by referring to the signals stored in PR i . The right select line configuration, SelR , is then
appended to the comprehensive activation package (Act_Pkд[R]) used to configure our entire
transformation. The bit pattern required for the DEMUX switches (resp., MUX switches) at the
output (resp. input) ports of router R will be referred to as the output (resp. input) activation

package for R. The bit pattern obtained by concatenating the activation packages of all routers
in the NoC will be referred to as the activation package of the NoC, or simply activation package

(Act_Pkд).

Remark 1. Algorithm 1 inserts MUXes on a port of router R such that the control configura-
tions induce topologies involving blocks that are already connected to some port of R. However,
note that the only requirement for functional correctness is that the intended topology is realized
under the MUX control configurations that correspond to the correct activation package; no as-
sumption is required for other configurations. ObNoCs can exploit this observation to connect

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

ObNoCs: Protecting Network-on-Chip Fabrics Against Reverse-Engineering Attacks 112:7

ALGORITHM 1: Algorithm for Custom MUX Insertion

Input: Router R with source and destination connections R[Si], R[Di]

Output: Activation package for R : R[Pi], Act_Pkд
Source (DEMUX) Configuration

1: for single Router connection R : R[Si], R[Di]. Di ← Si

2: for all Si in R[S], do

3: Generate MUXR_Si
.

4: MUX input : MUXR_Si
[ini]← R[Si],

5: MUX output : MUXR_Si
[out]

6: MUX_out_list append MUXR_Si
[out]

7: Store : PRi = [ini , Si ,Di , MUXR_Si
[out]]

8: RandomizeConnections(MUXR_Si
[ini])

9: SelR ← getIndex(MUXR_Si
, ini , Si)

10: Act_Pkд[R] append SelR
11: end for

12: for all Di in R[Di], do

13: Generate MUXR_Di
:

14: MUXR_Di
[ini] append PRi [MUXR_Si

[out]]
15: MUXR_Di

[out]← R[Di]

16: end for

17: end for

18: return Act_Pkд, MUX_out_list

Destination (MUX) Configuration

Input: Router R with source and destination connections R[Si], R[Di], MUXR_Si
[out], MUX_out_list.

Output: Activation package for R : R[Pi], Act_Pkд

1: for all Router connections Rn : Rn[Dn].

2: MUX input : MUXRn _Di
[ini]←MUXRn _Si

[out]
3: MUXRn _Di

[ini − 1]← randomSelect(MUX_out_list, size-1)

4: MUX output : MUXRn _Di
[out]

5: RandomizeConnections(MUXRn _Di
[ini])

6: SelRn
← getIndex(MUXRn

, ini , MUXRn _Di
[out], Di)

7: Act_Pkд[Rn_Si] append SelRn

8: end for

9: return Act_Pkд

R with other IPs creating additional topologies under different control configuration. This can
provide additional protection against SAT attacks and brute force adversaries.

3.2 Activation Package Loader

An NoC design transformed by ObNoCs would realize the original topology when the registers
connected to the controls of MUX and DEMUX switches are configured with the activation pack-
age. On the other hand, it is not possible to load the activation package directly on the fabri-
cated SoC via parallel load from external inputs given the limited number of input pins available.
ObNoCs correspondingly also introduces circuitry to load the activation package through a bit-
shifting paradigm.

Figure 4 shows the architecture for loading the activation package. The design is inspired by scan
chain designs in VLSI testing. To streamline insertion, we create a single register bank, referred
to as activation package load register (AP_LOAD_ REG) for holding the activation package of the
NoC. AP_LOAD_REG works on the Serial Input Parallel Output (SIPO) mechanism, where the

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

112:8 D. Halder et al.

Fig. 4. (a) Architecture of the Activation Package Loader Circuit. (b) Transformed SoC with Integrated Acti-

vation Package Loader.

activation package is provided one bit at a time per each clock cycle through the 1-bit primary
input AP_in. The signal LOAD_en is gated with the clock and the bits are loaded into the shift
register only when LOAD_en is asserted. Once the entire activation package is loaded into the
register, the LOAD_en is then de-asserted and the parallel outputs of the register are connected
to the respective programmable MUX select lines, with the correct configuration realizing the
intended topology.

4 SECURITY ANALYSIS

4.1 Theoretical Guarantee

The key security guarantee of ObNoCs is that the original topology of the NoC interconnect cannot
be derived from the obfuscated design without knowledge of the activation package. To make this
statement formal, let us fix a designD and letDo be an obfuscated design generated from ObNoCs
with an n-bit activation package A ∈ {0, 1}n . We call the topology graph T of D the intended

topology. Obviously, N consists of the IPs and routers in D. We call any topology graph G over
N a legal topology if for any node v ∈ N , the degree of v in T is the same as the degree of v in
G. Given any binary string b ∈ {0, 1}n , we refer to graph Gb derived from Do by setting the MUX
controls to be the bitstring b as the topology of Do induced by b. Obviously, the topology of Do

induced by the activation packageA is the intended topology. Then the following property defines
the security guarantee of ObNoCs.

Legality Enumeration. Given a binary string b ∈ {0, 1}n , let m be the average degree in the
topology of Do induced by b. Then the total number of unique legal topologies ism!.

The property is a straightforward from the ObNoCs construction and the observation that the
connections induced by the MUX and DEMUX switches at the input and output of each router
respect the original in-degree and out-degree of each node. A consequence of the property is that
the intended topology T is different from all the other legal topologies induced by the obfuscated
design Do only by the specifics of the bitstream that defines the activation package A. It follows
that an adversary without access to A, cannot distinguish the intended topology from other legal
topologies.

Remark 2. Informally, the intended topology here is really the topology that the designer desires,
while all topologies that can be realized through some values of the configuration bitstream are
legal topologies. It follows that the intended topology is simply one of the legal topologies, in

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

ObNoCs: Protecting Network-on-Chip Fabrics Against Reverse-Engineering Attacks 112:9

Fig. 5. Different Functional Topology generation using ObNoCs. 5(a) indicates the original topology, while

the other six topologies are legally functional, but none of them have the Original Functionality.

particular the specific legal topology that corresponds to the activation package that the designer
has in mind. However, other than the specifics of the activation package there is nothing else to
distinguish the intended topology from other (unintended) ones. In particular, each legal topology
would constitute an SoC in which IPs could communicate with one another. Note that some values
of the configuration bitstream would result in a non-functional topology in the sense that the same
port of two IPs is mapped to the same output. Figure 5 shows some possible unintended and non-

functional topologies, together with the (unique) intended topology. It is obvious that an adversary
can detect non-functional bit configurations; however, a large number of legal topologies and the
uniqueness of the intended topology among the legal ones implies that identifying the intended
topology is equivalent to identifying the activation package.

To explain the consequences of the above analysis a bit further, consider the SoC design shown
in Figure 1 For each router obfuscation, we used 16 4x1 MUXs. Since each 4x1 MUX requires
two select lines, the total number of bits for the activation package is 32. However, not every bit
pattern corresponds to a unique legal topology, due to the recombination of the combinational
logic involved. Even if only one router is obfuscated for the design in Figure 1, the number of legal
topologies is 4! = 24. Figure 5 illustrates 7 of the 24 possible topologies (including the intended
one) whereas Figure 5(a) indicates the intended topology upon insertion of the correct activation
package. The four different colored arrows in the red encircled portion with router R1 indicates
the original connection with the R3, R4, R5 and IP6. These connections from R1 can be controlled
by our ObNoCs which has been depicted in the rest of the figures in Figure 5. On the other hand,

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

112:10 D. Halder et al.

there is no a priori reason to determine which one of the legal topologies is the intended one (from
a functional standpoint) other than the “idiosyncrasies” of the designer’s choice. Furthermore, as
our empirical evaluation shows (see below) the different legal topologies induce very different
computations; consequently, the adversary cannot get away with identifying a topology close
enough to the intended. Finally, the number of possible legal topologies can be compounded by
simply composing the obfuscation in stages: for a 2-stage MUX-based obfuscation from Figure 2,
there are 4! · 4! = 576 legal topologies.

We conclude this section with a brief comment on the storage of the activation package. Recall
that our threat model considers an untrusted foundry or testing facility that has access to the
layout information for the unfabricated SoC as well as silicon implementation of the fabricated
SoC. Since the topology information is redacted by ObNoCs through the MUX insertion and the
control bits of the MUX are only programmed subsequently with the activation package by the
OEM, neither the layout nor the fabricated SoC has the activation package stored in the chip
as long as the SoC is in control of the untrusted entity. However, when the SoC goes to field, it
includes the activation package (which is obviously required to make the SoC functional). In this
paper, we do not specifically discuss the storage of the activation package in field since it is outside
the scope of our threat model. However, ObNoCs does not need any specialized mechanism
for storage and application of activation package; any mechanism for storing keys used for
unlocking an obfuscated circuit (e.g., through logic locking) can be applied for this purpose,
e.g., a typical mechanism involves utilizing a small tamper-proof ROM in the design to hold the
key bits.1

4.2 Resiliency Against Known Attacks on MUX-based Obfuscation

MUX-based transformation is a common strategy for obfuscating hardware functionality. Corre-
spondingly, there has been significant research on attacks against such obfuscation. To demon-
strate the effectiveness of ObNoCs we consider some common attack strategies and explain how
ObNoCs provides resiliency against these attacks.

Remark 3. Note that there has been no previous work to our knowledge on obfuscation of NoC
topologies. Although traditional logic locking techniques can be applied to SoC designs with NoC
fabrics, they are generally applicable only to gate-level netlists. Performing them on a complete
SoC, while possible in principle, incurs significant computational overhead and is infeasible in
practice. Indeed, ObNoCs avoids netlist designs works on RTL-level designs to avoid such compu-
tational overhead in obfuscation. Furthermore, the presence of encrypted IPs in Quartus makes it
practically infeasible to extract a complete netlist from Quartus to enable a direct comparison with
other obfuscation techniques. Furthermore, given these factors, a direct implementation and evalu-
ation of traditional attacks (which also apply to gate-level netlists) could not be performed as part of
direct resiliency evaluation. However, ObNoCs architecture in spite of being a MUX-based frame-
work, is robust against typical attacks on MUX-based obfuscation techniques as explained below.

ML-based Attacks. Machine Learning attacks on obfuscation [4, 6] use a variety of ML tech-
niques to predict MUX configurations, thereby inferring unbofuscated links, e.g., Alrahis et al.
[6] use GNN to perform such predictions. However, the success of the attacks relies on the fact
that the obfuscation is performed on a netlist post synthesis. Correspondingly, the ML strategies
are employed on unobfuscated links indicating dependence on the technology library. However,

1Current state-of-the-art locking techniques generally use an on-chip ROM although techniques for storing the key in the

cloud together with other provisioned assets is being explored. Generally, the requirement is that the storage should be

tamper-proof and communication of the key for its application should satisfy non-observability requirements.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

ObNoCs: Protecting Network-on-Chip Fabrics Against Reverse-Engineering Attacks 112:11

Fig. 6. Schematic of an NoC interconnect in Xilinx Vivado along with an ALU.

in ObNoCs, this assumption is broken since the obfuscation is performed before synthesis and
MUXs used are architectural entities with no dependence on the underlying technology library
for insertion.

SAT Attacks. SAT attacks [40] form another popular class of attacks to break hardware obfusca-
tion. They depend on an oracle (e.g., a fabricated design on which one can execute test patterns)
to answer the sequence of SAT queries. The SAT queries are computed to enable reconstruction of
specific bits of the activation package. Resiliency against SAT attacks depends on the query com-

plexity, i.e., the number of SAT queries involved in the attack. For ObNoCs, the query complexity is
defined by the number of legal topologies derived in Section 4.1. Furthermore, recall that ObNoCs
enables extensibility by extending the number of router connections with additional IPs, which
can be applied to achieve additional resiliency to SAT attacks. Finally, since SAT attack (and other
attacks) cannot distinguish the intended topology from other legal topologies, the correct activa-
tion package even if produced as a candidate bit pattern through SAT attack, cannot be vetted as
indeed inducing the intended topology (see below).

Specific Attack Instances. We have analyzed the resilience of ObNoCs on two specific attack
instances: (1) redundancy-based attack strategy [25], and (2) the SNAPSHOT deep learning attack
[37]. The key idea of redundancy-based strategy is that an incorrect activation package would
lead to incorrect functionality, which is exploited through different redundancy levels to infer
the correct key. SNAPSHOT relies on a deep learning strategy to predict the correct activation
package that corresponds to “intended” functionality. However, for ObNoCs, legal topologies that
differ from the intended one would still produce a functional SoC, simply not the one intended
by the SoC designer. Consequently, since the technique relies on functional validation to detect
incorrect behavior, it cannot distinguish counterfeit SoCs with legal topologies from the intended
one.

Remark 4. Obviously, any of the strategies above can find legal topologies. This leaves open
the possibility that the adversary can simply enumerate (and fabricate) all counterfeit SoC vari-
ants corresponding to legal topologies. This is indeed a threat if the number of legal topologies
is small. However, as discussed above, ObNoCs can apply staging strategy to expand the space
of legal topologies by multiplicative factors. Note that adding a single stage would multiply the
number of legal topologies by a factor of 24. Indeed, simply using the 2-stage strategy of Figure 2
with 576 possible legal topologies makes it infeasible for the adversary to fabricate all the SoC
variants.

4.3 Empirical Analysis

The security analysis above shows that it is infeasible for the adversary to reverse-engineer the
intended topology from ObNoCs obfuscation. One objection to that thesis could be that many

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

112:12 D. Halder et al.

Fig. 7. Multiple DUTs for the same Obfuscated NoC to compare the output for different activation package

combination.

Fig. 8. Comparison of the Output of all 9 DUTs on nine different activation package insertion.

topologies could be functionally similar, so a counterfeit SoC that does not create the intended
topology could still serve as a valid counterfeit. To evaluate this possibility, we considered the
a NoC interconnect and created a simulation environment with an ALU module integrated for
effective analysis of the functionality. Figure 6 shows a Xilinx Vivado setup for this empirical
analysis.2 In this figure, the router including all the required MUXes for the obfuscation and the
ALU module have been pointed out for a better understanding of the design. The key idea is to
drive the interconnect with different workloads corresponding to inter-IP communications and
observe the functional impact on the computation of the ALU. The simulation used a total of 9

2Our primary design and experimental testbed is Quartus, which we used for overhead analysis as discussed in Section 5.

In this figure, the router including all the MUXes used for this obfuscation, and the ALU module have been highlighted for

a better understanding of the design. However, for the empirical security analysis, we used Vivado for ease of simulation

of different instances. The interconnect model was exported from Platform Designer to Vivado to perform this simulation.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

ObNoCs: Protecting Network-on-Chip Fabrics Against Reverse-Engineering Attacks 112:13

DUTs (Figure 7) of which only one is driven by the correct activation package while the rest are
incorrect. Figure 8 shows the result of the simulation. The correct functionality is derived only with
the correct activation package. In the simulation we have provided 9 different activation package
for 9 DUTs. On the other hand, the ALU is still functional (but incorrect and different from the
functionality in the intended topology) in 6 DUTs, which correspond to legal topologies different
from the intended one. Note that functional validation of the ALU would consider all 7 topologies
to be correct, thwarting attacks that depend on functional validation.

Recall that the theoretical analysis above showed that the obfuscated design can correspond to
a number of different legal topologies of which only one is the intended one. To substantiate this,
we have created a simulation environment in Xilinx Vivado. For this simulation, we have taken
only the interconnect generated in Platform Designer as our Design Under Test (DUT).

The interconnect has been shown in Figure 6 and we have integrated one ALU module in it for
better analysis. The NoC interconnect fabric is responsible for all the data communication for the
SoC. To check data transfer from the NoC, we have taken the ALU result as our reference. In our
simulation, there are total 9 DUTs in Figure 7 where only one of them is driven by the correct
activation package, 8 are driven by the incorrect activation package.

5 OVERHEAD ANALYSIS

5.1 Benchmark SoCs

A key challenge in research on SoC security validation is the lack of an appropriate testbed for
evaluation. Evaluation of ObNoCs requires SoC designs with a realistic NoC-based communica-
tion fabrics connecting disparate IP cores that reflect realistic design complexity. Unfortunately,
there is no open-source SoC design satisfying these requirements. To address this problem, we
have developed our own SoC benchmarks, shown in Figure 9. We use three SoCs with different in-
terconnect sizes to ensure that our results are generalizable. The three SoCs are derivatives of each
other, comprised of similar IPs but with different interconnect topologies. We refer to the SoCs as
MultiSoC, LUTSoC, and FlashSoC respectively. Each SoC is comprised of six subsystems, with each
subsystem containing specific IPs; The CPU subsystem is made up of two NIOS processors; the
memory subsystem consists of an on-chip memory and a DMA controller; the Communication
subsystem includes an SPI module, an Ethernet, and a Serial Flash module; and the Debugging
subsystem consists of a JTAG and a Performance Counter IP.

While undoubtedly simple compared to an industrial product, the SoCs are non-trivial; the RTL
for the unobfuscated (original) SoC for each variant runs to about 100,000 lines of RTL, with the
interconnect fabric accounting for 10,500 lines. The Block Memory bits for the SoCs are 3.6 × 105,
9.8 × 105, and 1.2 × 106 respectively, and there are respectively 12, 15 and 16 routers in the NoC
fabrics.

5.2 Platform and Implementation Details

We implemented ObNoCs using the Intel Quartus Pro 21.3. For our SoC design and integration, we
have used the Platform Designer frontend of Quartus and implemented the ObNoCs methodology
for systematically redacting various router connections as reported below. For evaluating ObNoCs,
we have designed the SoCs using the Platform Designer (PD) frontend of Quartus Pro 21.3 and
implemented on the Agilex F Series FPGA, AGFA012R24A2E2V. Figure 10 shows the schematic
diagram of the obfuscated SoC where the enclosed red rectangle indicates the NoC interconnect
of the SoC after transformation by ObNoCs.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

112:14 D. Halder et al.

Fig. 9. Three SoC designs Used for ObNoCs Evaluation. All three designs have been implemented on Quartus

Prime with Platform Designer.

Fig. 10. Schematic of Benchmark SoC in Figure 9(a) from Quartus along with the obfuscated Interconnect

using ObNoCs technique.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

ObNoCs: Protecting Network-on-Chip Fabrics Against Reverse-Engineering Attacks 112:15

Table 1. Obfuscation Level based on No. of Routers

Obfuscation Level 0 I II III IV

No. of Routers 0 2 4 8 16

Fig. 11. ALM and MLAB Architecture in Intel® Agilex™ 7 FPGAs.

Fig. 12. Resource Analysis for MultiSoC, LUTSoC and FlashSoC at different obfuscation level.

5.3 Result Analysis

To provide a fine-grained analysis of the overhead induced by our interconnect transformation,
we define five levels of obfuscation (0-IV) as shown in Table 1 where obfuscation level 0 indicates
no obfuscation, i.e., the original design. Estimates of power and hardware resource overheads have
been derived from the Quartus platform. Quartus provides three different metrics on the resource
overhead: (1) power consumption; (2) number of required Adaptive Logic Modules (ALMs) and
(3) number of Logic registers (which estimates the state elements). The Intel Agilex device con-
sists of Logic Array Blocks (LABs) shown in Figure 11(b) and is implemented by enhanced ALM
modules mentioned in Figure 11(a) which allows efficient implementation of logic functions. Each
ALM consists of two Adaptive Look-up Tables (ALUTs), two dedicated embedded Adders and four
dedicated Registers [3]. We have followed the user guidelines from [2] to carefully analyze the
resources from Quartus generated reports.

Figures 12(a), 12(b), and 12(c) show the resource utilization for different levels of obfuscation.
Since for each obfuscation level there are variations in utilization depending on which specific
routers are selected as obfuscation targets (see below), we consider the average utilization
for each combination, e.g., the resource overhead for Obfuscation Level I is calculated by

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

112:16 D. Halder et al.

Fig. 13. Resource Overhead Rate for all 3 SoCs at different obfuscation levels.

considering the
(

n

2

)
results for designs derived by obfuscating each possible pair of routers

and considering the arithmetic mean where n is the number of routers available inside the
NoC fabric. Power and number of ALM both are increasing with the obfuscation level for all
three SoCs MultiSoC, LUTSoC and FlashSoC. Note that the power and number of ALM units
are increasing with the obfuscation level increment whereas the number of logic registers are
decreasing.3

Figures 13(a), 13(b), and 13(c) show the resource overhead rate results corresponding to various
obfuscation levels for the three designs. Note that this results in an average of only 5.68% overhead
increase in the number of ALM modules, 2.41% overhead increase in power consumption, 23.46%
reduction in usage of logic registers, where all of the three resource parameters have been com-
pared with their respective unobfuscated designs. Nevertheless, we can conclude that the addition
of logic by ObNoCs appreciably impacts very little in resource overhead.

It is interesting to understand the decrease in the logic register overhead which can be attributed
to the increase in the number of ALMs, with each ALM consisting of 4 additional registers. Since
the obfuscation technique is implemented using pure combinational logic, the primary effect of the
overhead is an increase in the number of ALMs as well as total power. This combinational logic is
implemented with ALMs, which leaves fewer resources available to build logic registers. In general,
all of the design’s logic functions, including both combinational and sequential logic, must share
the resources in an FPGA, such as ALMs and flip-flops. Additionally, the number of flip-flops that
can be used to build the registers are constrained if the combinational logic calls for a large number
of inputs or outputs. Furthermore, additional combinational logic introduced during obfuscation
(e.g., MUX and DEMUX structures) permits Quartus to perform aggressive optimizations in logic
synthesis.

Finally, the additional hardware logic introduced for obfuscation may affect the critical path of
the system. From Figure 14, we observe that the critical path increases due to the obfuscation level.
This suggests that the increased security due to the increasing degree of obfuscation induces a
trade-off by adding combinational gate delay. However, the delay induced is significant only for
obfuscation levels III and IV. Furthermore, in SoCs with a larger number of IPs, the combinational
delay in the interconnect would be proportionately less. This timing resource analysis is solely
based on Quartus Timing Analyzer report [2] with considering slack and critical path as timing
parameters.4

3We have taken the ALM and Logic Registers values obtained from Quartus synthesis report to represent area overhead.

Note that it is not possible to export the netlist synthesized from Quartus to an external environment (e.g., Xilinx Vivado

or Synopsys Design Compiler) since the Quartus environment integrates a number of encrypted IPs. Consequently, area

estimation using those traditional tools is not possible. For an ASIC implementation, the overhead result can be different.
4Our observations are based on pre-synthesis estimates, which can be different from post-synthesis implementation. Im-

plementing ObNoCs in FPGA and considering the correlation between pre-synthesis and post-synthesis timing correlation

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

ObNoCs: Protecting Network-on-Chip Fabrics Against Reverse-Engineering Attacks 112:17

Fig. 14. Timing Analysis for LUTSoC at different obfuscation levels.

6 RELATED WORK

There has been significant research on hardware obfuscation techniques primarily for protecting
hardware IPs against theft, reverse engineering, structural, data integrity and eavesdropping at-
tacks. Logic locking methods provide enhanced IP security by introducing additional logic to the
design [4, 11, 46]. Logic locking technique has been used for protecting integrated IPs in modern
SoC architectures from various hardware security threats. While extensive research has been con-
ducted on the applicability and effectiveness of logic locking over the past decade, the security and
strength of existing techniques remain questionable due to evolving attacks [22]. State Space Obfus-
cation techniques additionally include extra state elements to obfuscate the finite state machines
[10]. Correspondingly there has been work on attacking various logic-locking schemes based on
SAT-based attacks [40] and defenses proposed against such attacks [27, 44, 45]. Paar et al. [14] de-
veloped two foundry-level invasive attack schemes based on probing and mask modification which
could be used to break the encryption. Other advanced attempts to break obfuscation schemes have
been proposed [5]. As machine learning spreads, new strategies for breaking logic-locking systems
have emerged. this paper Sisejkovic et al. [38] presents an overview of current breakthroughs in
logic-locking attacks and defenses. Many logic locking systems now in use have a flaw that can be
exploited by an attacker to recover key bits from the locked chip’s design without the need for a
working replica of the device. Massad et al. [26] suggests a new logic locking method, Meerkat, to
solve this weakness and ensure security by utilizing Reduced Ordered Binary Decision Diagrams.

Shamsi et al. [35] introduced an interconnect locking scheme based on cross bars and layout
inclusive. But this technique is targeted only for IPs rather than a complete SoC. Kolbe et al. [24]
proposed a dynamic obfuscation technique by using reconfigurable logic and interconnect blocks
(RIL-Blocks) from the emerging spin-based devices. This technique is robust against the SAT at-
tacks but is only feasible for the devices with Magnetic Random Access Memory (MRAM). By using
fully programable Logic and Routing block (PLR), Kamali et al. proposed a Full-Lock obfuscation

will be considered in future work. However, such correlations are not germane to ObNoCs and follow standard practice of

timing correlations between various timing models used pre-synthesis vis-a-vis timing on actual artifacts.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

112:18 D. Halder et al.

technique [23]. Shamsi et al. [34] introduced dummy paths to the circuit to get the cyclic obfusca-
tion which is also robust against SAT attack. Zhang et al. [47] offers C-SAR, a security architecture
to protect against SAT attacks. By expanding the key search space and extending the clock cycles
of attack inputs, C-SAR protects against SAT attacks. They demonstrate that the cost of C-SAR is
controllable because it only rises linearly as a function of key bits. Juretus et al. provide analysis
on the performance of a different obfuscation technique against SAT attack [20]. The obfuscation
technique has also been applied at the post-fabrication level using the post-fabrication Transistor
Level Programming (TRAP) which can stand against both brute-force and oracle-guided SAT
attacks [36].

Authenticated encryption schemes for NoC security [12, 15, 33], focus on the encryption-
decryption of the data packets emanating out of an IP in the SoC. Deb Nath et al. [13] proposed an
architecture-level solution for run-time detection of security-critical events in SoC designs with
NoC fabrics by implementing security policies implemented through a specialized security-policy
engine. Securing inter-IP communications by detection of security policy violations by Meng
et al. [28] developed a property-based model comparison strategies to validate the NoC commu-
nications against information flow violations. There has been work on mitigating the effects of
data integrity and hardware Trojans in NoC designs [7, 21]. Wassel et al. [43] developed tech-
niques to increase security by temporal partitioning of data into different domains. Route random-
ization techniques have also been employed to detect and mitigate various side channel attacks
[19, 30–32, 39].

7 CONCLUSION AND FUTURE WORK

We have developed a new methodology, ObNoCs, for redacting NoC topologies in SoC designs to
protect against reverse engineering by untrusted fabrication facilities. To our knowledge, ObNoCs
represents the first technique for redacting system-level functionality in SoC designs. ObNoCs sys-
tematically replaces router connections with switches that can be programmed after fabrication.
We show how to implement this redaction functionality efficiently using MUX and DEMUX logic.
Our experimental results on representative SoC implementations show that the resource and over-
head of transformations through ObNoCs is minimal. Furthermore, ObNoCs provides provable
obfuscation of NoC connection against reverse-engineering adversaries.

In future work, we plan to apply ObNoCs on industrial-scale SoC designs. We plan to increase
the level of redaction by replacing the routing tables with custom configurable registers leading to
enhanced security. We also plan to extend our implementation of ObNoCs into a fully automated
CAD infrastructure.

ACKNOWLEDGEMENTS

We thank Kostas Amberiadis for his advice and help during the project, and the Intel Quartus team
for help with numerous Quartus issues.

REFERENCES

[1] [n. d.]. Intel Baytrail Products. https://ark.intel.com/content/www/us/en/ark/products/codename/55844/bay-trail.

html

[2] [n. d.]. Intel Quartus Prime Software. https://www.intel.com/content/www/us/en/products/details/fpga/

development-tools/quartus-prime.html/. [Online].

[3] [n. d.]. Intel® Agilex™ I-Series FPGA and SoC FPGA. https://www.intel.com/content/www/us/en/products/details/

fpga/agilex/i-series/docs.html

[4] A. Abdulrahman, A. S. Abuadbba, A. Aldabbagh, and O. Hasan. 2019. Sweep to the secret: A constant propagation

attack on logic locking. In Proceedings of the 2019 IEEE Asian Hardware-Oriented Security and Trust Symposium (Asian-

HOST’19). IEEE, 1–6. https://doi.org/10.1109/AsianHOST45689.2019.8966485

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

https://ark.intel.com/content/www/us/en/ark/products/codename/55844/bay-trail.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime.html/
https://www.intel.com/content/www/us/en/products/details/fpga/agilex/i-series/docs.html
https://doi.org/10.1109/AsianHOST45689.2019.8966485

ObNoCs: Protecting Network-on-Chip Fabrics Against Reverse-Engineering Attacks 112:19

[5] Niels Albartus, Ali Bayrak, and Michael Zohner. 2020. Dana universal dataflow analysis for gate-level netlist reverse

engineering. IACR Transactions on Cryptographic Hardware and Embedded Systems 2020, 2 (2020), 129–155.

[6] Lilas Alrahis, Satwik Patnaik, Muhammad Shafique, and Ozgur Sinanoglu. 2021. MuxLink: Circumventing learning-

resilient MUX-locking using graph neural network-based link prediction. 2022 Design, Automation & Test in Europe

Conference & Exhibition (DATE), 694–699.

[7] Dean Michael Ancajas, Harold John Perez, James Angelo Garcia, Paolo Jonathan Isidro, Jeffrey Jade Garcia, Marco An-

gelo Marcelino, Rafael Salvador, Rianne Villanueva, and Prospero Jr. Flores. 2014. Fort-NoCs: Mitigating the threat of

a compromised NoC. In Proceedings of the 51st Annual Design Automation Conference (DAC’14). 1–6.

[8] Leonid Azriel, Julian Speith, Nils Albartus, Ran Ginosara, Avi Mendelson, and Christof Paar. 2021. A Survey of Al-

gorithmic Methods in IC Reverse Engineering. Cryptology ePrint Archive, Paper 2021/1278. https://doi.org/10.1007/

s13389-021-00268-5 https://eprint.iacr.org/2021/1278

[9] Ulbert J. Botero, Ronald Wilson, Hangwei Lu, Mir Tanjidur Rahman, Mukhil A. Mallaiyan, Fatemeh Ganji, Navid

Asadizanjani, Mark M. Tehranipoor, Damon L. Woodard, and Domenic Forte. 2021. Hardware trust and assurance

through reverse engineering: A tutorial and outlook from image analysis and machine learning perspectives. J. Emerg.

Technol. Comput. Syst. 17, 4, Article 62 (jun 2021), 53 pages. https://doi.org/10.1145/3464959

[10] Rajat Subhra Chakraborty and Swarup Bhunia. 2009. HARPOON: An obfuscation-based SoC design methodology

for hardware protection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 28, 1 (2009),

97–109. https://doi.org/10.1109/TCAD.2008.2006838

[11] Rajat Subhra Chakraborty and Swarup Bhunia. 2010. RTL hardware IP protection using key-based control and data

flow obfuscation. In 2010 23rd International Conference on VLSI Design. 405–410. https://doi.org/10.1109/VLSI.Design.

2010.54

[12] Steev Charles and Prabhat Mishra. 2020. Securing network-on-chip using incremental cryptography. In Proceedings

of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’20). IEEE, 53–58.

[13] A. P. Deb Nath, S. Kumar, and S. Mukherjee. 2020. Security assurance of system-on-chip designs with NoC fabrics.

IEEE Signal Processing Society Newsletter 37, 5 (2020), 31–36. https://doi.org/10.1109/MSP.2020.2992936

[14] Sebastian Engels, Fadi A. El-Moussa, Joseph Rosenblatt, Andreea Homescu, Thomas Schneider, and Stefan Katzen-

beisser. 2019. The end of logic locking? A critical view on the security of logic locking. IACR Cryptology ePrint Archive

2019 (2019), 747.

[15] C. H. Gebotys and R. J. Gebotys. 2003. A framework for security on NoC technologies. In IEEE Computer Society

Annual Symposium on VLSI, 2003. Proceedings. 113–117. https://doi.org/10.1109/ISVLSI.2003.1183361

[16] Hector Gomez, Ckristian Duran, and Elkim Roa. 2019. Defeating silicon reverse engineering using a layout-level

standard cell camouflage. IEEE Transactions on Consumer Electronics 65, 1 (2019), 109–118. https://doi.org/10.1109/

TCE.2018.2890616

[17] Klaus Hofmann. 2012. Network-on-chip: Challenges for the interconnect and I/O-architecture. In 2012 International

Conference on High Performance Computing & Simulation (HPCS’12). 252–253. https://doi.org/10.1109/HPCSim.2012.

6266920

[18] Mirko Holler, Michal Odstrcil, Manuel Guizar-Sicairos, Maxime Lebugle, Elisabeth Müller, Simone Finizio, Gemma

Tinti, Christian David, Joshua Zusman, Walter G. Unglaub, Oliver Bunk, Jörg Raabe, A. F. J. Levi, and Gabriel Aeppli.

2019. Three-dimensional imaging of integrated circuits with macro- to nanoscale zoom. Nature Electronics 2 (2019),

464–470.

[19] Leandro Soares Indrusiak, James Harbin, and Martha Johanna Sepulveda. 2017. Side-channel attack resilience through

route randomisation in secure real-time Networks-on-Chip. In 2017 12th International Symposium on Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC’17). 1–8. https://doi.org/10.1109/ReCoSoC.2017.8016142

[20] Kyle Juretus and Ioannis Savidis. 2020. Characterization of in-cone logic locking resiliency against the SAT attack.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 8 (2020), 1607–1620. https://doi.

org/10.1109/TCAD.2019.2925387

[21] Manoj Kumar Jyv, Ayass Kant Swain, K SudeendraKumar, Sauvagya Ranjan Sahoo, and Kamala Kanta Mahapatra. 2018.

Run time mitigation of performance degradation hardware Trojan attacks in network on chip. 2018 IEEE Computer

Society Annual Symposium on VLSI (ISVLSI), 738–743.

[22] Hadi Mardani Kamali, Kimia Zamiri Azar, Farimah Farahmandi, and Mark Tehranipoor. 2022. Advances in Logic

Locking: Past, Present, and Prospects. Cryptology ePrint Archive, Paper 2022/260. https://eprint.iacr.org/2022/260

https://eprint.iacr.org/2022/260

[23] Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, and Avesta Sasan. 2019. Full-lock: Hard distributions

of SAT instances for obfuscating circuits using fully configurable logic and routing blocks. In Proceedings of the 56th

Annual Design Automation Conference 2019 (Las Vegas, NV, USA) (DAC’19). Association for Computing Machinery,

New York, NY, USA, Article 89, 6 pages. https://doi.org/10.1145/3316781.3317831

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

https://doi.org/10.1007/s13389-021-00268-5
https://eprint.iacr.org/2021/1278
https://doi.org/10.1145/3464959
https://doi.org/10.1109/TCAD.2008.2006838
https://doi.org/10.1109/VLSI.Design.2010.54
https://doi.org/10.1109/MSP.2020.2992936
https://doi.org/10.1109/ISVLSI.2003.1183361
https://doi.org/10.1109/TCE.2018.2890616
https://doi.org/10.1109/HPCSim.2012.6266920
https://doi.org/10.1109/ReCoSoC.2017.8016142
https://doi.org/10.1109/TCAD.2019.2925387
https://eprint.iacr.org/2022/260
https://eprint.iacr.org/2022/260
https://doi.org/10.1145/3316781.3317831

112:20 D. Halder et al.

[24] Gaurav Kolhe, Soheil Salehi, Tyler David Sheaves, Houman Homayoun, Setareh Rafatirad, Manoj P D Sai, and Avesta

Sasan. 2021. Securing hardware via dynamic obfuscation utilizing reconfigurable interconnect and logic blocks. In 2021

58th ACM/IEEE Design Automation Conference (DAC’21). 229–234. https://doi.org/10.1109/DAC18074.2021.9586242

[25] Leon Li and Alex Orailoglu. 2023. Redundancy attack: Breaking logic locking through oracleless rationality analysis.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42, 4 (2023), 1044–1057. https://doi.org/

10.1109/TCAD.2022.3192793

[26] Mohamed El Massad, Jun Zhang, Siddharth Garg, and Mahesh V. Tripunitara. 2017. Logic locking for secure out-

sourced chip fabrication: A new attack and provably secure defense mechanism. ArXiv abs/1703.10187 (2017).

[27] Travis Meade, Yier Jin, Mark Tehranipoor, and Shaojie Zhang. 2016. Gate-level netlist reverse engineering for hard-

ware security: Control logic register identification. In 2016 IEEE International Symposium on Circuits and Systems

(ISCAS’16). 1334–1337. https://doi.org/10.1109/ISCAS.2016.7527495

[28] Xingyu Meng, Kshitij Raj, Sandip Ray, and Kanad Basu. 2023. SeVNoC: Security validation of system-on-chip designs

with NoC fabrics. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42, 2 (2023), 672–682.

https://doi.org/10.1109/TCAD.2022.3179307

[29] Anuj Pathania and Jörg Henkel. 2018. Task scheduling for many-cores with S-NUCA caches. In 2018 Design, Automa-

tion & Test in Europe Conference & Exhibition (DATE’18). 557–562. https://doi.org/10.23919/DATE.2018.8342069

[30] Christian Reinbrecht, Peter Puschner, and Christian Steger. 2020. Guard-NoC: A protection against side-channel

attacks for MPSoCs. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’20). IEEE,

47–52.

[31] Christian Reinbrecht, Peter Puschner, Christian Steger, and Thomas Krieg. 2016. GOSSIP NoC–avoiding timing side-

channel attacks through traffic management. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI

(ISVLSI’16). IEEE, 197–202.

[32] Cezar Reinbrecht, Altamiro Susin, Lilian Bossuet, Georg Sigl, and Johanna Sepúlveda. 2016. Side channel attack on

NoC-based MPSoCs are practical: NoC Prime+Probe attack. In 2016 29th Symposium on Integrated Circuits and Systems

Design (SBCCI’16). 1–6. https://doi.org/10.1109/SBCCI.2016.7724051

[33] Johanna Sepúlveda, Andreas Zankl, Daniel Flórez, and Georg Sigl. 2017. Towards protected MPSoC communication

for information protection against a malicious NoC. Procedia Computer Science 108 (2017), 1103–1112. https://doi.org/

10.1016/j.procs.2017.05.139

[34] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z. Pan, and Yier Jin. 2017. Cyclic obfuscation for creating

SAT-Unresolvable circuits. In Proceedings of the on Great Lakes Symposium on VLSI 2017 (Banff, Alberta, Canada)

(GLSVLSI’17). Association for Computing Machinery, New York, NY, USA, 173–178. https://doi.org/10.1145/3060403.

3060458

[35] Kaveh Shamsi, Meng Li, David Z. Pan, and Yier Jin. 2018. Cross-lock: Dense layout-level interconnect locking using

cross-bar architectures. In Proceedings of the 2018 on Great Lakes Symposium on VLSI (Chicago, IL, USA) (GLSVLSI’18).

Association for Computing Machinery, New York, NY, USA, 147–152. https://doi.org/10.1145/3194554.3194580

[36] Mustafa M. Shihab, Jingxiang Tian, Gaurav Rajavendra Reddy, Bo Hu, William Swartz, Benjamin Carrion Schae-

fer, Carl Sechen, and Yiorgos Makris. 2019. Design obfuscation through selective post-fabrication transistor-level

programming. In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE’19). 528–533. https:

//doi.org/10.23919/DATE.2019.8714856

[37] Dominik Sisejkovic, Farhad Merchant, Lennart M. Reimann, Harshit Srivastava, Ahmed Hallawa, and Rainer Leupers.

2021. Challenging the security of logic locking schemes in the era of deep learning: A neuroevolutionary approach.

J. Emerg. Technol. Comput. Syst. 17, 3, Article 30 (may 2021), 26 pages. https://doi.org/10.1145/3431389

[38] Dominik Sisejkovic, Lennart M. Reimann, Elmira Moussavi, Farhad Merchant, and Rainer Leupers. 2021. Logic locking

at the frontiers of machine learning: A survey on developments and opportunities. In 2021 IFIP/IEEE 29th International

Conference on Very Large Scale Integration (VLSI-SoC’21). 1–6. https://doi.org/10.1109/VLSI-SoC53125.2021.9606979

[39] Ismael L. Soares, César A. M. Pereira, and Luigi Carro. 2019. Side-channel protected MPSoC through secure real-time

networks-on-chip. Microprocessors and Microsystems 68 (2019), 102888.

[40] Praveen Subramanyan, Swarup Bhunia, and Debdeep Mukhopadhyay. 2015. Evaluating the security of logic encryp-

tion algorithms. In 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST’15). IEEE,

112–117.

[41] Pramod Subramanyan, Nestan Tsiskaridze, Wenchao Li, Adrià Gascón, Wei Yang Tan, Ashish Tiwari, Natarajan

Shankar, Sanjit A. Seshia, and Sharad Malik. 2014. Reverse engineering digital circuits using structural and func-

tional analyses. IEEE Transactions on Emerging Topics in Computing 2, 1 (2014), 63–80. https://doi.org/10.1109/TETC.

2013.2294918

[42] Randy Torrance and Dick James. 2011. The state-of-the-art in semiconductor reverse engineering. In 2011 48th

ACM/EDAC/IEEE Design Automation Conference (DAC’11). 333–338.

[43] Hassan M. G. Wassel, Ying Gao, Jason K. Oberg, Ted Huffmire, Ryan Kastner, Frederic T. Chong, and Timothy Sher-

wood. 2013. SurfNoC: A low latency and provably non-interfering approach to secure networks-on-chip. SIGARCH

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

https://doi.org/10.1109/DAC18074.2021.9586242
https://doi.org/10.1109/TCAD.2022.3192793
https://doi.org/10.1109/ISCAS.2016.7527495
https://doi.org/10.1109/TCAD.2022.3179307
https://doi.org/10.23919/DATE.2018.8342069
https://doi.org/10.1109/SBCCI.2016.7724051
https://doi.org/10.1016/j.procs.2017.05.139
https://doi.org/10.1145/3060403.3060458
https://doi.org/10.1145/3194554.3194580
https://doi.org/10.23919/DATE.2019.8714856
https://doi.org/10.1145/3431389
https://doi.org/10.1109/VLSI-SoC53125.2021.9606979
https://doi.org/10.1109/TETC.2013.2294918

ObNoCs: Protecting Network-on-Chip Fabrics Against Reverse-Engineering Attacks 112:21

Comput. Archit. News 41, 3 (jun 2013), 583–594. https://doi.org/10.1145/2508148.2485972

[44] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan J. V. Rajendran, and Ozgur Sinanoglu. 2016. SARLock: SAT

attack resistant logic locking. In Proceedings of the 2016 IEEE International Symposium on Hardware Oriented Security

and Trust, HOST 2016. Institute of Electrical and Electronics Engineers Inc., 236–241. https://doi.org/10.1109/HST.2016.

7495588

[45] Muhammad Yasin, Jeyavijayan Jv Rajendran, Ozgur Sinanoglu, and Ramesh Karri. 2016. On improving the security

of logic locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 9 (Sept. 2016),

1411–1424. https://doi.org/10.1109/TCAD.2015.2511144 Publisher Copyright: © 1982-2012 IEEE..

[46] Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed Ashraf, Jeyavijayan (JV) Rajendran, and

Ozgur Sinanoglu. 2017. Provably-secure logic locking: From theory to practice. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS’17). Association for Computing Ma-

chinery, New York, NY, USA, 1601–1618. https://doi.org/10.1145/3133956.3133985

[47] Junyao Zhang, Paul Bogdan, and Shahin Nazarian. 2023. C-SAR: SAT attack resistant logic locking for RSFQ circuits.

ArXiv abs/2301.10216 (2023).

Received 23 March 2023; revised 2 June 2023; accepted 30 June 2023

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 112. Publication date: September 2023.

https://doi.org/10.1145/2508148.2485972
https://doi.org/10.1109/HST.2016.7495588
https://doi.org/10.1109/TCAD.2015.2511144
https://doi.org/10.1145/3133956.3133985

