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Abstract—Adversarial attacks on Deep Neural Networks rep-
resent a critical challenge in the adoption of DNNs in critical
applications. However, — and in spite of its great need, — there
is significant mystery surrounding attacks on DNNs. One reason
for this is the lack of a platform that enables users to get a
hands-on, intuitive understanding of the attacks. In this paper,
we address this problem by designing an extensible, configurable
exploration platform for studying various attacks on DNNs. Our
platform specifically focuses on DNNs deployed in Computer
Vision modules of automotive systems. Using the platform, the
user can perform various adversarial machine learning attacks,
such as evasion attacks and image-perturbation attacks, and
comprehend their adversarial effects on autonomous vehicles.
The platform can be used to plug and play with various neural
network models developed for Traffic Sign Recognition systems
in autonomous vehicles. The infrastructure includes both physical
and mixed-reality variants, and we demonstrate the usage of the
platform on two traffic sign recognition models with different
adversarial attacks.

I. INTRODUCTION

In recent years, there have been significant advancements
and proliferation in Deep Neural Network (DNN) applications.
One critical application is image classification, which entails
assigning classification labels to an images. DNNs have been
successfully used for classifying images from a variety of
domains including handwritten digits and characters, 3D toys,
human and animal faces, etc. It is also a critical technology for
autonomous driving technology, which depends on Computer
Vision systems typically realized through DNNs for perception
of environment [1]. Unfortunately, recent studies have shown
that DNNs in such applications can be easily fooled (e.g., by
providing perturbed images). Obviously, adoption of DNNs
in such critical applications depend on our ability to com-
prehend, detect, and mitigate such attacks. Unfortunately, —
and in spite of these demonstrations, — adversarial attacks on
DNNs are not well-understood, particularly outside researchers
and practitioneers with deep expertise in the underlying ML
principles. One reason for the mystique around ML attacks
is the lack of a platform that enables users play with such
attacks. Note that hands-on exploration is particularly relevant
to security exploration: appreciation of security challenges and
solutions can be effectively attained by actually learning to
hack a system.

In this paper, we present a platform that helps users
to explore the spectrum of adversarial attacks and image-

perturbation attacks and effects in a realistic miniaturized
autonomous driving environment. The platform permits ex-
ploration of attacks in both physical and mixed-reality modes.
It allows users to understand the impact of attacks through
interaction with the traffic signs, user dashboards featured
with real-time feedback, and structured usage guidance. The
user can plug in pre-trained Traffic Sign Recognition machine
learning models to examine various types of adversarial at-
tacks.

In summary, this paper makes the following contributions:
• An exploration platform that helps adversarial re-

searchers, attackers, automotive industry experts, and
others to explore and understand such adversarial attacks
and their effects on modern vehicle computer vision
application in a better way.

• The platform is built to explore and play with adversarial
attacks on Traffic Sign Recognition models with physical
and virtual road signs using Microsoft HoloLens 2 device
on the miniature platform.

The remainder of this paper is structured as follows: Section
II discusses related work that is closely related to adversarial
attacks on DNNs and relevant exploration platforms. Section
III describes the physical platform architecture, including the
various modes and configurations, as well as the limitations
and outcomes. Section IV explains mixed reality mode, and the
architecture and use cases of mixed reality platform. Section
V concludes the paper. The user interested in getting a feel
of the platform described here is encouraged to also watch
a video [2] that showcases many interesting features of the
platform.

II. RELATED WORK

There has been significant interest in adversarial attacks
on DNNs in recent years. Akhtar et al. [3] present at com-
prehensive survey on threats of adversarial attacks on deep
learning in computer vision. They emphasized the possibility
of malicious attacks in real-world conditions. Ekkjholt et
al. [4] performed a Road Sign attack by designing robust
adversarial perturbations. Goodfellow et al. [5] explain the
Fast Gradient Sign Method (FGSM) and related adversarial
attacks very well. Szegedy et al. [6] demonstrated attacks
through subtle perturbations in the images. Moosavi-Dezfooli
et al. [7] proposed the Deepfool attack, an adversarial sample
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Fig. 1: Physical platform architecture

generation technique that minimizes the euclidean distance
between perturbed and actual data. This attack effectively
produces adversarial examples with fewer perturbations and
higher misclassification rates.

There has also been work on developing simulators to
explore various aspects of driving functionality. SUMO [8]
is a multi-modal, open source, microscopic traffic simulator.
CARLA [9] focuses on the development, training, and val-
idation of self-driving systems. Yang et al. [10] proposed a
digital twin prototype to carry out multi-vehicle experiment
when availability of real vehicles is insufficient. The VIVE
platform [11] is another digital twin that explores interaction
among various hardware components in automotive use cases.

There has been relatively less work on platforms for hands-
on exploration of automotive security. One exception is AU-
TOHAL, which enables exploration of ranging sensor attacks
[12]. However this platform was custom designed for that
specific class of attacks and did not offer configurability and
extensibility.

III. PHYSICAL EXPLORATION PLATFORM

The high-level architecture of the physical exploration plat-
form is shown in fig. 1. It includes (1) Graphical User
Interface to input Traffic Sign Recognition (TSR) models,
select various attack exploration scenario options, and obtain
feedback 3; (2) The Remote Platform Controller (RPC) that
handles the video feed processing that received from the pi-car,
traffic sign prediction, actuation control transmission tasks, and
handles the coordination between the user interaction and the
physical environment; (3) The Pi-car Setup that has a self-
driving raspberry pi car and physical traffic signs as shown
in fig. 2. The pi-car transmits the video feed captured by
the raspberry pi camera to the RPC and then receives the
actuation controls like stop, yield, 30-speed limit, and 60-speed
limit based on the classification results. The actuation control
settings for the 30-speed limit and 60-speed limit correspond
to the 10% and 25% duty cycle PWM pulse or the dc motors of
pi-car. Remote Platform controller and pi-car setup tasks run
dependently on different threads built using python modules.

A. Benign scenario exploration

Fig. 4 shows the benign scenario exploration steps. The
user places the physical traffic signs on the platform. The
user starts the platform by launching the GUI as shown
in fig. 3, and selecting the Traffic Sign Recognition model,
which is pre-trained on a particular traffic sign dataset. The

Fig. 2: Physical exploration platform - top view and side view

Fig. 3: The Graphical User Interface
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Fig. 4: Benign scenario flow diagram in physical exploration
mode

Remote Platform controller and pi-car setup connection need
to be established based on the client-server mechanism for
exchanging the video and actuation controls. Following the
connection, the RPC decodes the video stream and displays
it to the user in the window. Before running the predictions,
the classifier unit pre-processes the video frames into images.
The TSR model is then fed this image which returns the type
of sign and the prediction confidence. The actuation controller
sends the message back to the pi-car based on the predicted
sign. Pi-car responds on the track to the received actuation
command from the RPC. The feedback module of the GUI
displays benign prediction results. The RPC also displays the
pi-car’s live video to the user for close monitoring of the
exploration scenario.

B. Attack scenario exploration

The attack scenario is shown in Fig. 5. The victim (pre-
processed) image is perturbed to generate an adversarial im-
age. This image is fed to the TSR model instead of the original
image. In the physical exploration attack model, we used the
Fast Gradient Sign Method (FGSM) to generate the adversarial
images. We follow GoodFellow [5] as a one-step method to
generate targeted adversarial examples using equation III-B
below. Here x is the original input image, t is the target
class label, θ denotes the model parameters, and J(θ,x, t)
is the loss function of the neural network. The gradient of
the loss corresponds to the input data is ∇xJ(θ,x, t). The
attack modifies the input data by a small step ϵ in the direction
(i.e. sign(∇xJ(θ,x, t)) that maximizes the loss. The resulting
perturbed image is xadv

xadv = x− ϵ.sign(∇xJ(θ,x, t))

We have developed two attack scenarios to trick the Traffic
Sign Recognition model using FGSM:

• Sensitive Attack is only performed on one traffic sign.
The user can mark one of the traffic signs as attack
victim and selects the target class for it to be misclassified
to, (e.g., a stop sign to misclassified as a speed limit
sign). The attack algorithm only tries to generate a
corresponding adversarial image for the victim and feed
it to the TSR model.

• Blind Attack attempts to attack all the traffic signs on the
platform. The user only selects the target misclassification
class (e.g., all signs to be misclassified as stop sign). The
attack algorithm generates an adversarial image to feed
the TSR model whenever a traffic sign is encountered.
Correspondingly, the user will notice the pi-car taking the

Fig. 5: Attack scenario flow diagram in physical exploration
mode

Fig. 6: Mixed reality platform architecture

actuation control as if the sign was the misclassification
target instead of the original.

C. Limitations of the physical exploration platform

The physical exploration platform allows the user to place
traffic signs on the track in real-time. The user can adjust
the viewing angles and distance of the signs in front of
the pi-car. However, physical limitations make it difficult to
perform experiments with a wide range of traffic sign variants.
Note that DNNs can be easily deceived by simply pasting a
sticker or changing a sign’s color or shape. In the exploration
platforms, creating a wide range of 3d printed Image-Perturbed
signs is infeasible.

IV. MIXED REALITY EXPLORATION PLATFORM

We overcome the physical limitations above through a
mixed-reality variant of the platform developed using Mi-
crosoft Hololens 2 device. In this variant, instead of physical
signs we use holographic signs generated by the HoloLens
device. The architecture shown in Fig. 6 has physical and
holographic components. The elimination of physical traffic
signs eliminates the need for the video capturing and pro-
cessing step. Instead, our mixed reality platform architecture
mimics the experience of the user playing with the actual signs
and exploring the platform with much more variants of signs.
Fig. 7 shows the holographic signs which can be introduced
on the vehicle path by the user using Hololens actions. In this
mode, the adversarial images are generated using the Image-
Perturbation method and Deepfool attack algorithm [7] on the
Squeezenet neural network model architecture.

Fig. 9 describes the steps for a user to explore a mixed
reality platform. The user starts the platform on the RPC by
launching the GUI and feeding the Traffic Sign Recognition
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Fig. 9: Mixed reality exploration platform usage flow

Fig. 7: Holographic stop sign placed on the platform

Fig. 8: Variants of stop, yield, 30-speed limit, and 60-speed
limit signs used in the mixed reality platform

model. The user then connects the pi-car by launching the
client script and deploys the HoloLens by wearing the headset
and launching the application. After pairing, the user interacts
with the virtual GUI, which includes the ability to show, hide,
or change a specific traffic sign by pressing a button. Users can
change the sign variants either from the image-perturbation
category or deepfool attack category and place them on the
track in the desired position. When the pi-car passes through
the IR sensor module, the RPC begins processing the traffic
sign variant using the input TSR model and generates results.
The results of these predictions will be sent to the pi-car
and the hololens. The pi-car will take the actuation control
as directed by the RPC. The pi-car can be stopped at any time
through the HoloLens dashboard.

V. CONCLUSIONS

We have developed to our knowledge the first platform for
users to do hands-on exploration of adversarial machine learn-
ing. Our platform focuses on attacks on vision systems partic-
ularly targeting autonomous vehicles. It uses both physical and
mixed reality to explore various adversarial attacks on Traffic
Sign Recognition neural network models. We demonstrated
our platform in both modes for a variety of attacks causing
mis-detection of traffic signs. The platform is adaptable in
supporting custom TSR models trained on custom datasets for
exploration through both physical or mixed reality modes.

In future work we will implement more adversarial attacks
on the platform, and explore extension of the platform for
other target domains of adversarial ML.
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