
1

VirSoC: Automatic Synthesis of Virtual
System-on-Chip Environments

Tashfia Alam, Indira Bhoomareddy Ramaiah, and Sandip Ray Senior Member, IEEE

Abstract—Modern System-on-Chip functionalities include sig-
nificant software interacting closely with low-level hardware
to realize system functionalities. This software is developed
concurrently with the hardware and must be validated before
the hardware is fabricated. Current industrial practice depends
on the creation of virtual prototyping environments to enable the
validation of such software. However, creating such prototypes is
complicated, manual, and error-prone. In this paper, we propose
a novel infrastructure, VirSoC, for automatically generating vir-
tual prototyping environments. VirSoC includes an architecture
and CAD flow to integrate different design blocks available in
different abstraction levels to create a coherent, uniform view of
SoC functionality suitable for early software validation. We show
several case studies illustrating the applicability of VirSoC.

Index Terms—Hybrid Virtual Platform, Hardware-software
co-validation, Stub IP

I. Introduction

RECENT years have seen a significant rise in the amount
and complexity of embedded software code integrated

into System-on-Chip (SoC) designs, often blurring the bound-
aries between hardware, firmware, and software components.
Software is now used to implement a variety of low-level
functionalities, such as fine-grained power management, au-
thentication, updates, and protocols for interfacing with off-
chip components. A key advantage of realizing a system
functionality through software instead of custom hardware is
that software can be more easily updated or “patched” in field,
in response to bugs or vulnerabilities detected after deployment
or to changing security, functionality, or performance require-
ments during the lifetime of the system. The trend towards
moving more and more system functionality to software is
anticipated to rise at an even sharper gradient in future as
time-to-market schedules continue to shrink, resulting in a
consequent shrinkage of verification time and a consequent
increase in escapes to deployment.

A key requirement for critical, low-level system software is
that they must be functional at the same time that the hardware
product is ready to ship. Consequently, the development and
validation of such software must proceed concurrently with the
hardware development and cannot wait until a mature silicon
platform is available. A key challenge in the early validation of
such software is the availability of a mature hardware platform

Tashfia Alam and Sandip Ray are with the Department of Electrical and
Computer Engineering, University of Florida at Gainesville, Gainesville,
FL 32611, USA. Email: tashfia.alam@ufl.edu, sandip@ece.ufl.edu. Indira
Bhoomareddy Ramaiah is with Cadence Design Systems, Inc, San Jose, CA
95134, USA. Email: indirar@cadence.com.

The second author contributed to this research while being affiliated to the
University of Florida.

on which to run (and test) the software. Note that running
the software on a previous generation SoC is not a viable
approach: software implementing low-level system function-
ality is generally written to interact with various components
of the targeted hardware, which may not be available in a
platform implementing a previous variant of the same SoC.
On the other hand, running software workloads on a Register-
Transfer-Level (RTL) simulator is prohibitively expensive (see
Section II). Consequently, a fast hardware model on which
to run software is not available until the hardware is mature
enough for running on emulators or FPGAs (or early silicon),
which can only occur late in the design life-cycle.

The current industrial practice to address this problem is
using virtual platforms. The virtual platformVP of a hardware
platform P is an abstract software model implementing the
high-level functionality of P. Software intended to run on P
is then developed and validated on VP. Unfortunately, the
application of virtual platforms as a vehicle for developing or
validating low-level system software is limited. In particular,
since many internal details of P are abstracted or omitted
in VP, subtle corner cases of hardware-software interac-
tions are missed when running software on VP. Industry
has attempted to address this problem through a variety of
hybrid virtual platforms, which include some integration of
some functionality as hardware models, e.g., as RTL blocks,
while the rest of the functionality is in software prototypes.
However, putting together a hybrid virtual platform in today’s
practice is a highly manual and time-consuming exercise, often
taking weeks to months. Furthermore, validation of different
software requires different hybrid platforms. For instance, if a
software functionality involves configuring the cryptographic
units for specific operation modes, then it is critical that
the cryptographic engine IP is integrated with a low-level
(RTL or netlist) implementation in the hybrid platform used
for developing and validating the software. On the other
hand, if the software is a computer vision implementation,
the IPs required with low-level implementation may include
DSP accelerators and vector processing units. Developing
and maintaining such hybrid virtual platforms represents a
complex, expensive, and time-consuming bottleneck for early
software development and validation.

In this paper, we address this problem by introducing a
novel infrastructure, VirSoC, for automatically creating hy-
brid virtual platforms integrating components in software and
hardware (RTL/netlist) abstractions. We refer to the platform
generated by VirSoC as a virtual SoC environment. Although
the virtual SoC is composed of a collection of heterogeneous
components at different levels of abstraction, the heterogeneity

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3398558

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 17,2024 at 19:45:19 UTC from IEEE Xplore. Restrictions apply.

2

of the underlying components is hidden from the user of the
platform utilizing it for early software validation: the user is
provided with the unified view of an integrated SoC platform
on which to run the software targeted for early validation. To
our knowledge, VirSoC represents the first automated flow
for generating hybrid virtual platforms with heterogeneous
IP collateral. The ideology for the automated tool flow is to
enable usage of the generated platform by exercising any use
case without considering how the hardware components take
the inputs. We demonstrate the use of VirSoC with a number
of case studies.

The key insight behind VirSoC is the observation that IPs
integrated into an SoC generally include validation testbenches
in addition to the implementation of the IP functionality. The
traditional role of a testbench is to enable smooth and system-
atic application of test inputs to validate the IP. However, an
indirect characteristic of any testbench is the ability to translate
inputs typically provided as transaction-level collateral into
a form that can exercise the target IP. VirSoC exploits this
observation to create an SoC-level testbench from those of
the individual IPs that is employed as a conduit for interfacing
modules in VP with IPs in RTL.

The paper makes the following important contributions.

• We develop a novel infrastructure VirSoC for configura-
tion and automated generation of hybrid virtual platforms.

• We show how we can use VirSoC to enable early
validation of SoC functionalities by providing suitable
platforms that help explore critical corner cases.

• We demonstrate the use of VirSoC with several case
studies.

The remainder of the paper is organized as follows. Sec-
tion II discusses the requisite background and provides an
overview of existing prototyping solutions. Section III dis-
cusses the challenges towards developing hybrid prototyping
solutions and how VirSoC addresses those. Section IV il-
lustrates the VirSoC architecture and tool flow. Section V
explains the application of VirSoC platforms in hardware-
software co-validation, demonstrating several case studies tar-
geting different applications. We discuss the role of VirSoC
in reducing the manual effort in creating hybrid platforms
along with the overhead and functional efficiency of VirSoC
platforms in Section VI. We conclude in Section VII.

II. Background and RelatedWork

A. Virtual Platforms

Virtual platform (VP) has emerged as a critical infrastructure
for enabling early software development for modern SoC
designs. The idea is to develop a (virtualized) software abstrac-
tion of the underlying hardware platform and use this abstract
model in lieu of hardware in early design and validation of
software intended to run on the platform. To enable effective
abstractions and enable the VP to be ready early in the
development cycle, only a part of hardware functionality that
is visible to the software running on the system is modeled,
e.g., low-level timing and power management functionality are
removed, while the functionalities of the interface registers that

can be written by software are preserved. VP models for differ-
ent hardware IPs are generally developed using a high-level
language such as SystemC-TLM (Transaction Level Model)
[1]. Many commercial CAD vendors include infrastructure
for the streamlined implementation of VP models. Some
commercial offerings include Virtualizer™ from Synopsys [2],
Helium™ from Cadence [3], and Vista™ from Siemens [4].
Wind River Simics [5], [6] enables simulation of high-level
behavior of target hardware and exploration of hardware-
software interactions. Additionally, there are open-source vir-
tual prototyping infrastructures: a popular infrastructure is
e.g. QEMU [7], which has been used for a broad spectrum
of validation tasks. Obviously, many low-level details of the
hardware are abstracted in the VP model, and consequently,
the use of VP as a validation vehicle may miss corner cases
dependent on such detail. To address such limitations, various
hybrid virtual platforms (HVP) are architected in current
industrial practice, where some hardware blocks are modeled
in software, but for others, a hardware model is integrated with
the VP. The abstraction level for the integrated hardware model
can vary, e.g., there are hybrid platforms with some IPs in RTL
model, FPGA, or even a previous silicon implementation of
the product. Hybrid VPs can expose system-level corner cases
by enabling the user to view low-level details of hardware-
software interaction [13]. However, the design of hybrid VPs is
challenging in today’s practice and can incur extensive human
effort (see Section III).

B. Hardware-software Co-validation Basics

SoC designs are created by the integration of a variety of
pre-designed hardware and software blocks, — often referred
to as “Intellectual Properties” or “IPs”, — which coordinate
through system-level fabrics to realize the overall system
functionality on a single substrate. In modern SoC designs,
many key functionalities are implemented through complex
hardware/firmware interactions. Consequently, validation of
the integrated hardware/firmware/software stack is critical for
the correct and trustworthy functionality of the system. The
term “hardware-software co-validation” refers to techniques
for validating this integrated stack, typically early in the design
development prior to the availability of silicon implementation
of the hardware. Obviously, verification of software compon-
ents requires some underlying hardware model on which to
run the software. Consequently, industry has invested in a
variety of platforms for early validation of software (before the
hardware is fabricated in silicon). These platforms are diverse
and complex and include Emulators, FPGAs, and virtual
platforms as well as various hybrids [14], [15], [16], [17],
[18], [19], [20], [21]. However, each platform entails a trade-
off between various parameters, including simulation speed,
design abstraction, modeling effort, and cost. For instance,
conventional RTL simulation models provide a detailed model
of the hardware, but the simulation speed of RTL is about
a billion times slower than the silicon, making it infeasible
to explore complex hardware-software use cases [13]. FPGA
prototyping [22], [23] provides a higher execution speed that
facilitates the exploration of embedded software. However, the

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3398558

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 17,2024 at 19:45:19 UTC from IEEE Xplore. Restrictions apply.

3

Stage 0 Stage 2 Stage 3

Integrate HW
components

Define Interface
Registers and

protocols for IPs

Stage 4

S
W

C
om

po
ne

nt
s

VP

VP VP

VP IP

IP

IP

IP

VP

VP VP

VP IP

IP

IP

IP

VP

VP VP

VP IP

IP

IP

IP

Create Interface
Glue logic for VP

models

G
lu

e
Lo

gi
c

~1 person
month

~1 person
month

~1 person
month

Time
estimation

Transition from
one stage to

another

Modeling
effort

Low to high

H
W

C
om

po
ne

nt
sPartitioning

into HW/SW
components

based on
application-
level usage
scenario

Interface
Resgisters

Interface
Resgisters

VP

VP VP

VP

less than 1
person month

H
W

C
om

po
ne

nt
s

/SoCCom
Integrate SW
components

Stage 1

Figure 1. Industrial practice of Hybrid Virtual Prototype Formation. The time estimates for each stage are culled from publications, tutorials, and keynotes
of industrial researchers [8], [9], [10], [11], [12] as well as experience of the authors working on hybrid VP design in companies like Intel and Qualcomm.

observability of design internals is limited in FPGAs, making
it challenging to perform hardware debugging. Additionally,
the number of input/output ports in FPGAs may restrict
the scope of SoC implementation, incurring high resource
costs. Emulators [24], [25] reproduce the functionality of
an IP or SoC and offer reasonably high exploration speed
with substantial observability, enabling hardware-software co-
validation of SoC designs; however, emulation machines are
highly expensive and consequently may not be suitable for
IP-level verification. Furthermore, both FPGA and emulation
solutions are available only when the hardware design is
relatively mature and thereby preclude early validation.

C. HVP-based Hardware-Software Co-validation Practice

Early hardware-software validation using hybrid VP in
industry includes actions from a variety of stakeholders and
several handoffs. Figure 1 provides a simplified view of
the activities involved to provide a flavor of the complexity
and handoffs. Roughly, the activities can be divided into
two phases: (1) creation of the appropriate hybrid VP that
is effective in running the targeted scenarios and tests and
(2) execution of the tests and collecting coverage data from
the platform (and finding bugs). Note that the hybrid VP
must be configured with the targeted tests in mind, e.g., if
the test involves interaction of a software application with
a cryptographic module, the platform must be assembled to
enable executing the software on a VP running the Instruction
Set Architecture (ISA) for the microprocessor involved, while
the crypto module involved must be integrated as an IP in
RTL or gate-level netlist. To comprehend the abstraction level
necessary for each component, the usage scenarios to be
exercised are first analyzed and partitioned into hardware (RTL
or netlist) and software components (Stage 0). The software
components are mapped to VP models (Stage 1). The hardware
components are integrated with the communication fabric to
form the hardware subsystem (Stage 2). For the hardware
subsystem, additional interface registers and protocols are
defined for each IP to enable interaction with the VPs (Stage
3). Finally, glue logic is created to compose the VP and
hardware models into an integrated subsystem (Stage 4).

As shown in Figure 1, the design of a hybrid VP takes
several months of manual effort for typical validation teams
in companies like Intel and Qualcomm. One key reason for
this significant manual effort is the need to reconcile hetero-
geneity and inconsistency among interfaces in the constituent
IPs, as explained in Section III. Furthermore, note that the
platform being created is targeted towards the specific usage

scenarios to be run and the hardware-software corner cases
being explored. Different tests and usage scenarios require
different hybrid VPs, e.g., a power management scenario
requires a different set of components in RTL vs software
than a cryptography use case, even for the same targeted SoC
design. Consequently, a large part of the manual effort involved
needs to be replicated for each such hybrid VP instance created
(for each class of use cases).

D. An SoC Compiler

Our work makes use of an SoC compiler tool SoCCom that
was developed in previous work by Deb Nath et al. [26].
This tool takes hardware IP blocks (implemented in RTL)
together with metadata specifying integration topology and
constraints and generates an integrated SoC (Algorithm 1,
refer to Table II for a glossary of notations). The tool enables
the configuration of design parameters such as bus width,
memory size allocation, memory-mapped I/O, and peripheral
address size. The SoC design is then implemented by creating
a top-level RTL glue logic that integrates the constituent IPs
and generates interfaces obeying the specified configuration.
SoCCom also enables the generation of multi-core SoCs with
Network-on-Chip fabrics.

Algorithm 1: SoC formation using SoCCOM
Input:

Configuration file (CFG) containing
(a) SoC specification (connectivity information)
(b) Pointer to RTL IPs (R)

Output: SoC RTL (S)
1 Procedure SoCCOM (CFG,R)
2 〈EIO, EP, EH〉 ← HDL-Analyzer(CFG,R)
3 S ← SoC-Generator(EIO, EP, EH)
4 Procedure HDL-Analyzer(CFG,R)
5 〈EIO〉 ← Extract-I/O(CFG,R)
6 〈EP〉 ← Extract-Param(CFG,R)
7 〈EH〉 ← Extract-Header(CFG,R)
8 return 〈EIO, EP, EH〉

9 Procedure SoC-Generator(EIO, EP, EH)
10 Create top-level SoC module
11 Include EH

12 Instantiate Fabric IP based on EP

13 Instantiate and map EIO to fabric ports

14 S ← Form top-level RTL
15 return S

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3398558

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 17,2024 at 19:45:19 UTC from IEEE Xplore. Restrictions apply.

4

Algorithm 1 shows the System-on-Chip (SoC) formation
process using SoCCom. The initial phase in SoC compilation
involves the preparation for integration of all IPs and intercon-
nect components. To achieve this, SoCCom employs an HDL-
Analyzer module to systematically extract and consolidate IP
integration standards, encompassing headers such as define,
import, and include for each IP using Extract-Header func-
tion, port definition, port types using Extract-I/O function,
and width specifications and local or global parameters using
Extract-Param function. Using the SoC-generator module,
SoCCom then assimilates the metadata obtained from the
HDL-Analyzer to produce interfaces that align with the design
parameters. The parameters include address bus width, data
bus width, memory size allocation, memory-mapped I/O, and
peripheral address size. They are employed to create a glue
logic to integrate the constituent IPs. The IPs are instantiated
based on the parameters and interfaced with the relevant fabric
to form the top-level RTL implementation of the SoC.

Note that SoCCom does not account for any heterogeneity
in abstraction, e.g., all IPs to be integrated must be available
as RTL designs. Furthermore, SoCCom does not comprehend
HW-SW interaction. Our work in this paper extends the idea
of automated SoC creation to account for heterogeneity in ab-
straction and correspondingly enables HW-SW co-validation.

E. Related Work

There has been significant recent work to enable smooth de-
velopment of Hybrid Virtual Platforms to enable early design
and validation of software functionality. Table I provides a
quick overview of the existing tools and infrastructures. Syn-
opsys Virtualizer™ [2] includes a Virtualizer Development Kit
to enable assembly of different blocks into virtual prototypes.
VDK can link VP models (developed with Virtualizer) with
FPGA-based systems using transactors. Wind River Simics
[6] provides interfaces to integrate transaction-level models
(TLM) for hardware IPs written in SystemC with the VP
infrastructure. QEMU-based virtual platforms [27], [37], [38],
[39], [40] have been extensively used to target exploration
and validation of binary code for a variety of underlying
processor architectures, including ARM, OPENRISC, RISCV,
x86, MIPS, and SPARC. Likewise, OVP [31] offers a library
of open-source cores and others collaterals needed for VP
formation. Simics Vista [4] enables creation, debugging, and
analysis of TLM models. Huang et al. [28] present an indus-
trial case study of SoC HW/SW verification flow exploiting
platforms at different abstractions such as RTL-FPGA co-
simulation and SystemC-FPGA co-emulation. Kim et al. [9]
implement a hybrid virtual platform that enables software
development and verification of (Samsung) mobile Application
Processor designs at the initial stage of RTL design. The
platform integrates VP and HW emulators using transactors.
CPU, memories, and other peripherals frequently used for
Android platform boot-up reside on the virtual platform, while
other (RTL) IPs are implemented on an emulator, maximizing
the runtime performance of SW leveraging VP simulation
speed. Kang et al. [29] demonstrate an industrial case study

of SoC development and verification methodology by adopting
hybrid VP technology combining high-level abstraction (C++)
firmware running on SystemC models, and RTL designs,
which helped detect many bugs at an earlier stage. Wicaksana
et al. [32] present a VP and FPGA-based hybrid prototyping
platform that provides a flexible system-validation solution
for HW/SW co-design at different stages of development
based on the availability of TLM and RTL implementations.
Additionally, this methodology enables runtime debugging and
offline analysis for early HW/SW architecture exploration.
Similarly, Masing et al. [33] propose a NoC-based hybrid
prototyping solution interfacing a VP and an FPGA using NoC
links that provides an optimized interface with low latency.
Choi et al. [30] introduce a VP solution incorporating two
heterogeneous prototypes, i.e., SystemC and RTL, connected
through IPC (Inter Process Communication). In addition, the
proposed approach shows how it helps reduce setup time for
other platforms, such as combining VP with HW emulator.
Kabir et al. [34] demonstrate an exploration platform called
ViVE that provides a configurable hybrid prototyping platform
enabling users to explore and exercise system-level use cases
targeting automotive security applications. VPSIM [35] integ-
rates the QEMU emulator into SystemC, leveraging QEMU’s
high-performance emulation technologies like Dynamic Bin-
ary Translation and Paravirtualization. Cucchetto et al. [36]
demonstrate the integration of SystemC with both QEMU and
OVP, including support for cycle-accurate simulation of RTL
models.

Despite the diversity of these platforms, the scope of each
infrastructure is limited. Table I provides a detailed summary
of the features and limitations of each available infrastructure.
Some common limitations include automation support for
creating the platform, as well as resource and communic-
ation overhead. In contrast, VirSoC streamlines the hybrid
platform generation process by enabling automatic generation
and exercise of such platforms, facilitating early validation.
Additionally, VirSoC-generated platforms are configurable:
the user can form a prototype irrespective of the heterogeneity
of the IPs and realize the necessary platforms. The only con-
straint imposed by VirSoC is the requirement that IPs come
with a standardized testbench, which is typically available for
most commercial IPs, including both soft and hard IPs (see
Section III).

III. Hybrid Virtual Prototyping Challenges and VirSoC
Solution

A fundamental challenge in the development of HVPs is
the need to address heterogeneity: it must be possible for
IPs developed at different levels of abstraction to coordinate
and communicate to realize the overall system functionality.
Simply connecting the IPs through a standard port abstraction
is insufficient. For instance, a microcontroller IP developed for
VP is simply modeled to execute a sequence of instructions;
low-level features of the hardware implementation of the mi-
croprocessor (e.g., clocks) are abstracted in the model. On the
other hand, an RTL IP for a bus controller can provide a cycle-
accurate model of the controller functionality. Connecting

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3398558

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 17,2024 at 19:45:19 UTC from IEEE Xplore. Restrictions apply.

5

Table I
Features and Limitations of RelatedWork

Domain Tool/Infrastructure Pros Cons References

In
du

st
ry

Synopsys Virtualizer Development Kit Enables assembly of different blocks into virtual prototypes. Not fully automated in terms of development and testing [2]

Wind River Simics Full system simulation with early exploration, reproducibility
and debugging features. Resource intensive and associated with modeling overhead. [6]

QEMU Open source emulator compatible with diverse ISAs to be used
in a hybrid virtual platforms.

Needs additional support from tools for deployment in system-
level applications. [27]

InPA Co-emulator
Supports multi-mode operations: RTL-FPGA co-simulation,
SystemC-FPGA co-emulation, providing flexibility for different
stage of SoC design flow.

Substantial efforts required for setting up the validation
environment [28]

Hybrid Emulation Platform
by Samsung

Facilitates early software development and demonstrated on
android platform with significant speed-up.

While it helps in reducing manual design efforts, there is
still some automation overhead and communication overhead
between virtual and emulation platforms.

[9]

An Industrial case study of SoC
Verification using VPs

Provides a seamless verification methodology leveraging VPs
demonstrating fault detection in early stages. No support for automatic creation of platforms [29]

IPC(Inter Process Communication)-
based Hybrid VP solution

Use of IPC between heterogeneous simulators facilitates
communication and cooperation, potentially improving the
efficiency of the co-verification process.

Requires significant building efforts and lacks automation support. [30]

Open Virtual Platforms (OVP)
by Imperas Ltd.

Provides fast simulation, library of free open source processor
and peripheral models, enabling developers to access a wide
range of components for their simulations.

Associated with integration complexity, may require a learning curve
and face limitations in model availability. [31]

Siemens Vista
Facilitates ESL design by enabling quick TLM model creation,
debugging, and analysis, allowing for first-pass success in
prototyping complex systems.

Requires a learning curve to adopt and limited model availability. [4]

A
ca

de
m

ia

A VP and FPGA-based Hybrid
prototyping Methodology

Offers flexibility and efficiency in validating hardware and
software designs at various stages of development and includes
features for runtime performance analysis and debugging.

Associated with complexity in synchronization of different
abstractions, overhead from remote communication and
limited comparison with existing work provided

[32]

A Network-on-Chip (NoC)-based
hybrid prototyping solution

Use of NoC links facilitates transparent operation, homogeneity,
and suitability for repacketizing data; provides an optimized
physical interface between the VP and FPGA with low latency.

Incorporates synchronization challenges due to no support
for automation. [33]

ViVE Enables early exploration and validation of system-level
functionalities comprehending their interactions. Limited to modeling of automotive systems and applications. [34]

VPSIM
Integrates QEMU-based emulation with dynamic accuracy control,
and utilizes a Python front-end for expressive and efficient virtual
prototyping.

Possible complexity in dynamic platform composition, reliance on
XML for description, and careful tuning required for optimal
performance.

[35]

Co-simulation of SystemC models in
QEMU and OVP virtual platforms

Allows for rapid prototyping and simulation of full HW/SW
systems, offering benefits such as efficient management of
design complexity and decoupling of software development
from hardware availability,

Performance may be impacted compared to native QEMU-based
approaches, and cycle-accurate simulation of QEMU/OVP and
SystemC is not fully supported.

[36]

these two IPs to create a meaningful system-level functionality
entails design of transactors to translate data into respective
abstractions. In practice, careful design of interfaces enabling
smooth functioning of a heterogeneous system designed by
the composition of IPs at different levels of abstraction is
a complex manual process involving weeks or even months
[8]. Consequently, HVP designs have to be carefully planned
to be in synchrony with RTL drops at different levels of
maturity, and the system-level properties to be explored to
ensure appropriate transactors and interfaces are in place. The
situation is exacerbated by speed mismatch between different
IPs, e.g., exercising an event in RTL simulation takes several
orders of magnitude more time than VP exploration of an event
of comparable complexity.

VirSoC addresses the heterogeneity problem by the ob-
servation that appropriate collateral necessary for designing
transactors is already available at the time of HVP integration,
albeit not part of the integration flow. In particular, testbenches
are developed for (RTL) IPs and available at the time of
delivery. The goal of a testbench is, apparently, to perform
functional validation of the IP. However, in the process, the
testbench performs input translation to match the underlying
design abstraction. For instance, typical testbenches for RTL or
netlist IPs can take inputs in a standard transaction-level model
(TLM) abstraction and apply them possibly across multiple
clock cycles as required by the underlying IP. VirSoC re-
purposes this feature, turning the testbench into the interme-
diary for translating abstract transaction-level communications
provided by the VP to (possibly multi-cycle) communication
inputs as necessary for an RTL, netlist, or silicon IP. We
show how to make this idea work in practice to enable
automated creation of hybrid VP environments. Furthermore,

this approach shields the VP models from the idiosyncrasies
and optimizations involved in the communication interface of
individual IPs and obviates the need for standardizing the
access sequence for each IP: the existence of a testbench
that can translate transaction-level communication payloads to
inputs for the IP is sufficient. Obviously, this comes with the
requirement for standardizing testbench structures so that the
VP can seamlessly communicate with testbenches for different
IPs. However, in our experience, this standardization does not
induce additional cost, which is already occurring in current
industrial practice with almost universal adoption of UVM
[41].

IV. VirSoC Architecture and Tool flow

We start with a motivating example to explain the key in-
gredients of VirSoC. Suppose the envisioned SoC architecture
includes a CPU running an X86 instruction set, as well as
an AES encryption module, connected to a Wishbone bus
(together with other IPs), as shown in Fig. 2. Consider a
software binary B slated to execute on the CPU on top of
an operating system, and suppose B includes invocation of
an encryption function which is to be implemented in the
integrated SoC by invoking the AES module. In a silicon
implementation, B (and the OS) would execute on top of
the silicon implementation of the X86 CPU, and the CPU,
together with the AES IP and other hardware IPs would be
integrated possibly with a system bus and communicating with
each other through bus transactions. However, our goal is to
exercise and validate the interaction involved before an SoC
has been fabricated in silicon. Suppose we have a VP model
of the X86 microcontroller, together with RTL IPs such as
Wishbone bus and AES (among others). To implement this

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3398558

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 17,2024 at 19:45:19 UTC from IEEE Xplore. Restrictions apply.

6

 Shared

 Space
AES

IP

System call invokes AES
encryption service

Translate input to
RTL abstraction

<Encryption
Input

Arguments>

<Output>

VP Infrastructure RTL

IP

AES

IP
X86

Instruction

B

CPU

B executes on top
of CPU

<Received Output
 from the bus>

SoC Environment (in RTL abstraction)

CPU sends
instruction to AES

through the bus

(a) (b)

<Output>
Stub IP

receives the
computed

output

W
is

hb
on

e
bu

s

W
is

hb
on

e
bu

s IP

Stub
IP

Output
Computation OS

X86
Instruction

B

CPU

(Guest) OS

Figure 2. A sample program P Execution in an SoC Environment. (a) Flow of operations in a real SoC. (b) Flow of operations in the Hybrid VP system.

(a)

Tool User Input

RTL IPs with Test
benches

Virtual Components

Communicating
Interface

Design Specifications

Configuration File

(b)

rtu

Stub IP

IP

IP

 IP

Virtual
Prototype

Communicating
Interface

C
om

m
un

ic
at

io
n

Fa
br

ic

Guest OS

Host OS

SoC

Virtual SoC Environment

Output

Figure 3. An Example Virtual SoC formation through VirSoC. (a) User Input. (b) Generated Virtual SoC Environment.

interaction, the following would be a typical flow of operations
in most hybrid VP systems.

1) The program B includes a system call through a special
command when it needs to invoke the encryption function
from a different RTL IP. The system call is trapped by
the guest OS as a special command and passed along via
the VP infrastructure through the host OS.

2) The encryption command and its arguments are passed
into a special space in the filesystem under the Host OS,
from where it is accessible to the RTL simulator running
on the host system.

3) The argument is translated (either manually or through
some tool) to inputs in the RTL abstraction. When the
model involves a bus like Wishbone, this entails sending
the command as a bus transaction directed to the AES IP.

4) THe AES IP (in RTL) receives the encryption directive
(as a bus transaction), performs the encryption function-
ality, and returns the result as a bus transaction directed
to the CPU.

5) Since the CPU is in VP, the bus output is captured and
transmitted to the VP model, which is passed on by the
guest OS as the result of the computation to program B.

VirSoC creates a CAD infrastructure to automate the in-
teractions and data flow between VP and RTL (resp., silicon,
or FPGA) models so that the heterogeneity of abstractions is
hidden from the user. Instead, a homogeneous view of an SoC
environment is offered where the user only needs to provide
the binary B as they would have when interacting with the
SoC in silicon. The result is a powerful validation platform
that removes the complexities of manually developing VP with
various hardware models to support different use cases while

enabling early exploration and validation of hardware-software
use cases.

Figure 3 shows the overall flow of VirSoC and the envir-
onment created. The tool “glues together” the different SoC
components at various levels of abstraction: (1) creating an
SoC-level testbench from individual IP-level testbenches; (2)
integrating different virtual abstractions to create a unified SoC
environment. It uses a (user-specified) shared address space1

to enable smooth coordination between components modeled
at different levels of abstraction; this address space is used
as a shared read-write memory to enable communication of
computation commands or results (See Section V). Platform
generation of the VirSoC makes use of the following two
ingredients.

Integrated Testbench: The purpose of the testbench is to
mediate between the RTL environment and the IPs in virtual
abstractions and translate the incoming inputs to the format
the RTL subsystem receives. Testbenches are conventionally
included with the designs to enable validation. A key function-
ality of a testbench is to translate incoming (transaction-level)
inputs to match the underlying abstraction of the implement-
ation. We use this indirect functionality of the testbench to
enable smooth communication of data from VP models to low-
level abstractions. In our motivating example, the encryption
command created by the VP module is a transaction-level
software command that is passed on to the testbench, which

1In typical VirSoC implementations on a server with an operating system,
the shared address space can be implemented as a folder or directory managed
by the OS. The VirSoC framework supports such implementation but is not
tied to the specifics of the implementation. In our implementation, the user is
permitted to designate a shared address space as a configuration parameter.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3398558

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 17,2024 at 19:45:19 UTC from IEEE Xplore. Restrictions apply.

7

translates it to appropriate inputs for an RTL module for
the target SoC (e.g., appropriate values for activating the bus
signals, sending the command through the bus to the crypto
IP). Note that this functionality is integrated into the testbench
for the crypto IP already since it is required for functional
verification of the IP core. By integrating the IP testbenches,
VirSoC avoids the need for developing a complicated (and
customized) translation mechanism for the VP to communicate
with each IP.

Stub Modules: Stub Modules are dummy IPs implemented
in RTL for each VP component in the environment. The
purpose of the stub IP is to receive the computed results
from the communication fabric of the SoC and deliver them
to the external environment. To understand its role, note that
in our motivating example, the AES IP, after completing
its computation, must send the result to the CPU (step 4).
However, the CPU itself is in VP, and therefore, the result
must be captured and translated back to the VP environment
(step 5). In VirSoC, the stub IP facilitates this as follows.
There is a stub IP for the CPU in RTL that is connected to
the bus using the same interface that the CPU would have
been connected to had it been in RTL. The computed result
from the AES block is consequently communicated to this IP.
The functionality of a stub IP is simply to output anything
it receives to the external environment in the shared space,
where it can then be “picked up” to transfer to the VP.

Algorithm 2 shows the high-level VirSoC platform gen-
eration algorithm. The algorithm uses several configuration
parameters, including information about various architecture
and IP collateral involved, e.g., the location of the different
IPs at different abstractions (RTL, VP, FPGA), list of the
IP-level testbenches and the shared address space used for
communication between different abstraction levels. VirSoC
platform generation then operates in two steps: (1) Creating
a structurally integrated block of IP components in the same

Table II
Glossary of Notations

Term Definition
CFG Configuration file
R RTL IPs
IT B IP-level Test benches
S T Stub IP
VP Virtual Platform

C Communication channel between VP and
RTL abstraction

S Generated SoC with RTL IPs
S T B SoC-level Test bench

S C
Collection of scripts gluing SoC with virtual
abstractions to enable exercise use cases

EIO Extracted I/O from CFG and R
EP Extracted parameters from CFG and R
EH Extracted headers from CFG and R
EF Extracted function names from IT B
EM Extracted parameters from IT B
MT B Modified IP-level Test bench with added suffix

Algorithm 2: Virtual SoC Environment Generation
Input:

Configuration file (CFG) containing
(a) Connectivity specification of RTL IPs
(b) Pointer to RTL IPs (R) and Stub IPs (S T)
(c) Pointer to IP-level testbenches (IT B)
(d) Placeholder variables receiving stimuli in IP

testbenches (EI)
(e) List of Virtual Platforms (VP)
(f) Pointer to shared address space between each

virtual component and RTL components (C)
Output: Virtual SoC environment

1 S ← RTL-Subsystem-Gen(CFG,R, S T)
2 S T B ← SoC-Testbench-Gen(CFG, IT B, EI)
3 S C ← Connecting-Framework(CFG,C, S T B, EI)
4 return 〈S ,VP, S C〉

Algorithm 3: RTL Subsystem Generation

1 Procedure RTL-Subsystem-Gen (CFG,R, S T)
2 foreach VP ∈ CFG do
3 C′FG ← Include-S T -Spec (CFG)
4 end
5 S ′ ← SoCCOM(C′FG,R)
6 FIO ← Trace-fabric-ports (EIO)
7 S ′ ← Connect-to-top (FIO, S ′)
8 foreach S T ∈ C′FG do
9 S TO ← Trace-S T -output-ports (EIO)

10 S ← Connect-to-top (S TO, S ′)
11 end
12 return S

level of abstraction, e.g., in this step, all RTL IPs are integrated
and coordinated to form a cohesive RTL subsystem; and (2)
assembling and gluing together design blocks at different
levels of abstraction, e.g., in this step, interfaces are generated
to enable VP modules to interact with RTL, FPGA, and silicon
IPs. Note that the first step essentially integrates RTL IPs and
can consequently be realized through repurposing the SoCCom
framework (Algorithm 1). However, unlike SoCCom, it uses
stub modules in place of the IPs that are not available in RTL,

Algorithm 4: SoC Testbench Generation

1 Procedure SoC-Testbench-Gen (CFG, IT B, EI)
2 foreach IT B ∈ CFG do
3 EF ← Extract-func-name(IT B)
4 EM ← Extract-param(IT B)
5 〈E′F , E

′
M〉 ← Add-suffix(〈EF , EM〉)

6 MT B ← Modify-Tb (IT B, 〈EF , EM〉, 〈E′F , E
′
M〉)

7 end
8 S ′T B =

∑n
i=1 MT Bi

9 F ← Trace-connected-fabric-ports(S , EI)
10 S T B ← Modify-Tb (S ′T B, EI , F)
11 return S T B

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3398558

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 17,2024 at 19:45:19 UTC from IEEE Xplore. Restrictions apply.

8

Figure 4. A sample use case demonstration showing a series of S C execution
initiated by user-API invocation.

Design
Specifications

Communicating
Interface

 VP component

RTL IPs with
test-benches

RTL Subsystem
Generator

RTL IP

SoC test bench
Generator

SoC-level Test
bench

Invoke
RTL

Simulator

Output

Output

O
ut

pu
t

Parse and carry the
o/p

Look for inputs

C
om

m
unication Fabric

SoC

RTL IP Stub IP

RTL IP

Configuration File

RTL
Simulator

Software

End user input

Figure 5. VirSoCArchitecture: Design Components & User interactions with
the platform. The bold arrow shows the automation flow to carry out the
user instructions.

as described below (see below). The second step creates the in-
tegrated testbench for the coordination of IPs at different levels
of abstraction (see Algorithm 4). Furthermore, APIs (S C) are
generated to enable communication of different components
through testbenches by using a connecting framework (see the
last step of Algorithm 2).

Generating RTL Subsystem: Algorithm 3 shows the RTL
subsystem generation. The key idea is to configure and include
the stub modules and then use SoCCom to synthesize the

RTL subsystem.2 For this purpose, Include-S T -Spec generates
a SoCCom-compatible intermediary configuration file C′FG
that includes the connectivity information of the stub IPs in
place of the virtual components. For each VP present in
the CFG, VirSoC specifies a respective stub module, i.e., it
specifies a stub IP in the C′FG for the mentioned example.
The connectivity specification of the stub IPs follows a similar
structure to the regular RTL IPs (R) specified. SoCCOM then
combines the IPs in RTL, including stub IPs, and forms an
RTL subsystem with the specified communication fabric (see
Section II-D). To realize that, SoCCOM first systematically
extracts and aggregates the design metadata, including headers,
such as define, import, and include (components) of each IP,
network adapter, router, shared-bus crossbar, port definition,
port types, and width, and local or global parameters. The
extracted metadata is then utilized to create a compatible
interface for each IP with the communication fabric (see
Algorithm 1). The Trace-fabric-ports function parses the
fabric ports from the extracted metadata (EIO), and Connect-
to-top function introduces them to the (SoCCOM generated)
top module S ′ to enable receiving external stimuli provided
by a testbench. Correspondingly, for each stub IP specified,
the output ports are connected to the top module to deliver
the respective output to the external environment and finally
realize RTL subsystem S . In our example, this step entails
creating the RTL subsystem, including the crypto IP and other
RTL blocks with a stub module for the CPU to form a (bus-
based) RTL subsystem.

Generating SoC-level Testbench: Algorithm 4 shows the
SoC-level testbench generation by assembling the testbenches
from individual IPs. The algorithm first checks that all IP-
specific testing components are available, compatible, and can
be integrated into a single testbench. For this purpose, the
functions Extract-Func-Name and Extract-Param parse and
extract necessary information from each testbench, including
the functions’ names and parameters, and add IP-specific
suffixes to differentiate them (implemented by Add-Suffix).3

The algorithm modifies each testbench with the new function
names and parameters using Modify-TB function. This avoids
possible redefinition, conflicts of the same function, or para-
meter names used by different testbenches. In the example,
this step would ensure the appropriate crypto IP is provided
the stimuli given the presence of other crypto IPs with similar
testing components. Next, the modified IP testbenches are
merged to form an intermediary testbench (S ′T B). A critical
aspect of having an SoC-level testbench is abstracting direct
communication with the IPs and enabling communication
through the fabric. To realize this, Trace-connected-fabric-
ports parses the RTL subsystem (S) to trace the fabric ports
the local IP input ports EI (that receive stimuli) are mapped

2For pedagogical reasons, we present the description of the RTL system
in this paper as if it is incorporated into a simulation environment. However,
the VirSoC infrastructure itself is independent of whether the RTL modules
are exercised through a simulation environment, FPGA, or silicon. The only
requirement is that the different hardware IPs are accessible through the
testbench. See below.

3If two instances of the same IP are used, this step will ensure that the two
instances are individually invocable with distinct names.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3398558

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 17,2024 at 19:45:19 UTC from IEEE Xplore. Restrictions apply.

9

to and Modify-TB replaces them with associated fabric ports
in the integrated testbench. In our example, the tool forms
a testbench that integrates the crypto and other IPs’ testing
components, providing stimuli to the top-level RTL subsystem
via the wishbone bus.

Generating a Complete Environment: Finally, to enable
the users to work with IPs represented in different formats
and ensure smooth interoperability between different levels
of abstraction, the last step for VirSoC (Algorithm 2) is to
create a complete composite subsystem by gluing together
the different available collateral. The function Connecting-
Framework (Algorithm 2 Step 3) performs this task by
generating a variety of scripts (S C) to integrate IPs represented
in different abstractions and ensure smooth interoperability.
This function parses the configuration file to generate a variety
of interface functions that can be used by the user; it also
extracts a variety of logistic and book-keeping information
(e.g., the number of bytes to be transmitted from an IP to
through the fabric to support a specific computation service).
Figure 4 provides a detailed visualization of how these scripts
glue different components of VirSoC and the execution flows
and hand-offs necessary to support a use case involving the VP
and RTL components. For our crypto example, scripts include
interfaces for “consuming” a request coming from the user
program in VP and translating the sequence of bytes output
through the stub module to transaction-level data transmitted
to the VP.

V. Case Studies

We applied VirSoC on several hardware-software co-
validation case studies. Here, we summarize three repres-
entative case studies. The case studies discussed here are
sanitized and simplified from typical industrial hardware-
software validation use cases to illustrate the role of VirSoC.
Table III provides an estimate of the gate count of the target
SoC designs involved and respective platform creation time.
Note that VirSoC is independent of the target design size and
can effectively support the automatic creation and testing of
platforms across a range of design complexities.

Remark 1: Although VirSoC design itself is independent of
the specifics of the VP models, communication fabric, or the
implementations and abstractions of the IPs in RTL or FPGA,
any case study with the infrastructure requires a specific
instantiation. For the case studies discussed here, we use a
VP based on QEMU-x86 that incorporates the virtual model
of a processor implementing the IA32 Instruction set, running
Ubuntu 18.04 as a guest OS. The RTL IPs discussed here
are SystemVerilog modules exercised with a SystemVerilog
simulator running on a Linux server; the communication fabric
is a Wishbone bus.

Remark 2: In the case studies below, note that the initial
segment of the flow of operation (first four columns) is
exactly the same for all use cases. See Figures 6, 7, and
8. Furthermore, the last two columns are different for each
flow only in the payload of the computed result and the IP
from which the payload originates. The VirSoC framework

automates all these hand-offs, leaving the user with only the
requirement of activating the operation flow through a user-
level interface invoked from the software in VP.

Cryptographic Application: The goal of this case study is
to explore and validate the interaction of software driver with
crypto IP in the SoC. It is a slight elaboration of the motivating
example discussed in Section IV. The use case corresponds to
software running on the processor invoking the service of the
crypto module, the crypto IP performing the computation, and
the results transmitted back to the software driver running on
the processor. In this hybrid VP exploration, the software runs
on the VP platform (as an X86 binary), while the crypto IP
is in RTL. Our instantiation includes two different crypto IPs,
AES and DES3. Figure 6 shows the corresponding operation
flow. Note that for VirSoC, the only change to be made to
explore the different interactions with the crypto IPs is for the
user program to switch the encryption command directive; the
platform handles the rest of the flow automatically.

Processor-Memory Co-validation: The goal of this use
case is to ensure that software running on a processor correctly
performs load and store operations to the different memory
units. Figure 7 defines the operation flow for this use case.
Here, we use the processor IP in VP that interacts with a
RAM IP. The use case explores various ways in which the
processor performs a variety of load-store operations on the
RAM. Other than the update to the driving software, no other
human intervention is required to set up the platform to explore
the use case.

DSP Application: In this use case, we consider software
interacting with an IIR (Infinite Impulse Response) IP. The
interaction (Figure 8) is a sanitized instantiation of repres-
entative DSP applications. The IIR IP takes a series of input
samples from which it calculates the output samples. Note that
this entails a highly analog response. However, from VirSoC
standpoint, the platform generated simply needs to incorporate
the IIR functionality (and the stub module for the processor
in RTL) to interact with the software running on the VP.

VI. Discussion

A. Reduction in Manual Effort

It is instructive to reflect upon the manual effort reduction
facilitated by VirSoC vis-a-vis the current state of the practice
discussed in Section II-C. In particular, note that VirSoC
generates the hybrid VP from constituent available collateral
automatically. Note that for each of the case studies above, the
platform generation through VirSoC takes less than a second.
Furthermore, the only user activity entails activation of the
operation flow, through the user-level interface invoked from
the software VP (as well as the design of the test software
for exercising the use case). This is in stark contrast to
current practice, where the setup of a hybrid VP targeted
for a specific class of use cases takes several person months
(Figure 1).

Obviously, as explained above, this significant reduction
in manual effort is achieved only via the standardization of
testbench structures. Indeed, the entire VirSoC infrastructure

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3398558

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 17,2024 at 19:45:19 UTC from IEEE Xplore. Restrictions apply.

10

Table III
Estimated Design size (in NAND2 equivalent) and Hybrid VP Creation Time

Use cases Estimated gate count
of the Core

Gate count
of the rest

Estimated gate count
of the envisioned SoC

Hybrid VP
Formation time (sec)

VP Firmware uses RTL AES IP during secure boot
for derivation of crypto keys 200k 125k 325k 0.4

VP Firmware uses RTL DES3 IP during secure boot
for derivation of crypto keys 200k 130k 330k 0.47

VP Firmware uses RTL IIR IP to perform
certain filtering operation 200k 135k 335k 0.45

VP Firmware uses RTL RAM IP to perform certain
memory write and read operation 200k 125k 325k 0.44

User Process
(in VP)

VP-Host
Channel

RTL (SoC)
Driver

Bus interface
(RTL)

Invokes AES
encryption

service

Update the SoC-
level test bench
with new inputs

Carry the
inputs to the

AES IP

Read the cipher text

Invoke HDL
simulator

Compute
the cipher

text
Take the

cipher text
and make it
available to

the SoC
output port

AES IP
(RTL)

<Cipher text>

<Plain text, key>

Stub IP
(RTL)

To
ol

in

vo
ca

tio
n

O
ut

pu
t

co
m

pu
ta

tio
n

U
pd

at
e

Te
st

 b
en

ch
O

ut
pu

t
av

ai
la

bl
e

to
 V

P

Receive
inputs from

the user

Receive
output at the

end of
simulation <Cipher text>

Yes

Wait till inputs
available in the

VP-Host channel

Wait till simulation
completes

Wait till output
available in the

VP-Host channel

User Process
(in VP)

VP-Host
Channel

RTL (SoC)
Driver

Bus interface
(RTL)

Invokes DES3
encryption

service

Update the SoC-
level test bench
with new inputs

Carry the
inputs to the

DES3 IP

Read the cipher text

Invoke HDL
simulator

Compute
the cipher

text
Take the

cipher text
and make it
available to

the SoC
output port

DES3 IP
(RTL)

<Cipher text>

<plain text, key1, key2, key3>

Stub IP
(RTL)

To
ol

in

vo
ca

tio
n

O
ut

pu
t

co
m

pu
ta

tio
n

U
pd

at
e

Te
st

 b
en

ch
O

ut
pu

t
av

ai
la

bl
e

to
 V

P

Receive
inputs from

the user

Receive
output at the

end of
simulation <Cipher text>

Yes

Wait till inputs
available in the

VP-Host channel

Wait till simulation
completes

Wait till output
available in the

VP-Host channel

(a) (b)

Figure 6. Crypto Case Study with VirSoC. (a) Crypto services provided by AES. (b) Crypto services provided by DES3.

User Process
(in VP)

VP-Host
Channel

RTL (SoC)
Driver

Bus interface
(RTL)

Invokes RAM
read service

Update the SoC-
level test bench
with new input

Carry the
input to the

RAM IP

Read the data

Invoke HDL
simulator

Read data
from the
provided
address

Take the data
and make it
available to

the SoC
output port

RAM IP
(RTL)

<Data read>

<Memory address>

Stub IP
(RTL)

To
ol

in

vo
ca

tio
n

O
ut

pu
t

co
m

pu
ta

tio
n

U
pd

at
e

Te
st

 b
en

ch
O

ut
pu

t
av

ai
la

bl
e

to
 V

P

Receive
inputs from

the user

Receive
output at the

end of
simulation

Yes

Wait till input
available in the

VP-Host channel

Wait till simulation
completes

Wait till output
available in the

VP-Host channel
<Data read>

Figure 7. Operation Flow for Memory Read in Processor-Memory Co-
validation.

is designed to exploit this standardization for automating the
integration of IPs into a single unified environment by hiding
the heterogeneity of their underlying implementations and
abstractions. For legacy IPs where the testbenches have been
designed in an ad hoc manner, it may be a significant effort to
retrofit them to work with VirSoC. However, as explained in
Section III, this standardization is already happening in current
industrial practice. VirSoC exploits this trend by repurposing
the already developed standardized testbenches for automatic

User Process
(in VP)

VP-Host
Channel

RTL (SoC)
Driver

Bus interface
(RTL)

Invokes IIR filter
service

Update the SoC-
level test bench
with new inputs

Carry the
inputs to the

IIR IP

Read the output
integers

Invoke HDL
simulator

Apply IIR
operation

and
compute the

output

Take the
output and

make it
available to

the SoC
output port

IIR IP
(RTL)

<Series of transformed integers >

<Series of integers>

Stub IP
(RTL)

To
ol

in

vo
ca

tio
n

O
ut

pu
t

co
m

pu
ta

tio
n

U
pd

at
e

Te
st

 b
en

ch
O

ut
pu

t
av

ai
la

bl
e

to
 V

P

Receive
inputs from

the user

Receive
output at the

end of
simulation

Yes

Wait till inputs
available in the

VP-Host channel

Wait till simulation
completes

Wait till output
available in the

VP-Host channel

<Series of transformed integers >

Figure 8. Use case demonstration exercising IIR IP.

generation of hybrid VP.

B. Execution Performance of VirSoC-generated Platforms

A key motivation for a hybrid virtual platform is to enable
fast execution of use cases involving hardware-software in-
teraction early in the development (when the silicon module
for various components or even FPGA implementations are
unavailable). In particular, typical handcrafted hybrid virtual
platforms execute about 106 times faster than RTL simulations
[11], [8], [12]. Since the VirSoC platform is automatically

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3398558

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 17,2024 at 19:45:19 UTC from IEEE Xplore. Restrictions apply.

11

Total Execution Time: 38 seconds
Instruction Count: 25
Average execution time = 1.52 seconds/instruction

Total Execution Time: 41 seconds
Instruction Count: 35
Average execution time = 1.17 seconds/instruction

Figure 9. Estimation of Average Instruction execution time on RISC-V.

generated, it is worthwhile to determine if it also performs
a corresponding speedup. Here, we explain the experiments
we did to enable back-of-the-envelope calculations to demon-
strate that the execution speed of VirSoC is consistent with
expectations and that, indeed, it provides a viable approach
for hardware-software co-validation.

To examine this question, we instantiated VirSoC with
QEMU-x86 running Ubuntu 16.04 as guest, constituting the
VP and SystemVerilog modules for the RTL components
(exercised by Verilator simulator) on a Dell server running
Ubuntu 18.04 as host. Given this setup, the goal of the per-
formance comparison is to see the speedup over a conventional
RTL implementation. Obviously, an RTL implementation is
expected to be slower than any hybrid VP; however, the
VP created through VirSoC involves communication among
multiple heterogeneous components, including many in RTL
and exercised through simulation, as well as a number of
scripts handling various software handoffs. Consequently, it
is not a priori obvious that the speedup from VirSoC would
be substantial.

There are two key practical challenges with performing
performance evaluation for a hybrid VP. First, since RTL
simulation can take a long time, it is impossible to do an actual
time calculation for the entire hardware-software use case;
consequently, we resort to an estimate using the calculation
shown below. Furthermore, realistic RTL models of X86
processor are not directly available for integration with IPs
to form a complete RTL simulation environment. (Indeed,
that is in part why a hybrid VP is often used to exercise
hardware-software use cases.) To address this deficiency, we
use a RISC-V processor as a proxy for the CPU IP in RTL
for comparison purposes. Note that RISC-V is a much simpler
architecture than X86. Consequently, the projected simulation

time reported is lower than what would happen if it were an
X86 processor. However, this implies the relative speed of the
VP vis-a-vis RTL would be even higher if compared with an
RTL platform with X86-based processors.

Calculating Projected Simulation Speed for pure RTL
model: To estimate the projected simulation speed, we had
to estimate the time that would be taken if the VP model (in
this case CPU) was instead replaced by RTL. Obviously, such
a processor model would need to execute all the instructions
that are currently executed in VP. To estimate the number
of instructions involved, we used the QEMU TCG plugin
[42]. Based on this data, the estimated number of baseline
instructions involved is 893365348 simply to boot the system
and initialize the software use case as necessary for exploring
any hardware-software interactions. Given that this includes
instructions of different types with variations in running time
on simulation, we choose different (random) instruction sub-
sequences from this set to estimate the average running time
per instruction. Figure 9 shows the result of this experiment.
The conservative estimated simulation time per instruction on
RTL as a result of this experiment is ∼1second per instruction.4

Table IV summarizes the results. Note that virtual SoC
environments execute within a few seconds, while it would
take years to exercise the same use cases in RTL simulation.
While the RTL simulation estimate is not surprising, the
demonstration does show that hybrid VP is crucial to our
ability to perform early Hardware-software co-validation, and

4This estimate is consistent with other folkloric estimates on typical
simulation times, which estimate simulation time for one instruction to be
about a second in RTL for a cycle-based simulator if the targeted silicon
speed is 1GHz [11], [8].

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3398558

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 17,2024 at 19:45:19 UTC from IEEE Xplore. Restrictions apply.

12

Table IV
Comparing Simulation Speed for VirSoC with RTL Platform

Use cases
Simulation Speed in VirSoC
generated platform (second) Estimated RTL

Simulation
Speed (hour)Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Average

execution time
VP Firmware uses RTL AES IP during secure boot

for derivation of crypto keys 7.359 7.229 7.372 7.910 8.113 7.596
28 years

(projected)VP Firmware uses RTL DES3 IP during secure boot
for derivation of crypto keys 7.681 7.277 7.240 8.343 8.655 7.839

VP Firmware uses RTL IIR IP to perform
filtering operation 7.1631 7.233 7.453 7.882 8.220 7.590

VP Firmware uses RTL RAM IP to perform certain
memory write and read operation 7.194 8.317 7.203 7.56 8.39 7.732

automatically generated virtual environments from VirSoC
indeed is a viable platform for exploration of such use cases.

Remark 3: One may criticize the above calculations as too
simplistic. However, note that the goal of the experiments is
not to compare hybrid VP performance with RTL simulation.
Indeed, the relative speed of VP over RTL is well-understood
and is the primary reason why VP is used for early hardware-
software co-validation in practice; establishing this speedup is
not a contribution of this paper. The only point to establish is
whether the automatically generated hybrid VPs from VirSoC
perform adequately in practice with execution speedup similar
to those of hand-crafted VP over RTL simulation so that they
can be treated as viable platforms for hardware-software co-
validation. Our back-of-the-envelope calculation establishes
this viability. Furthermore, it is also well-known that the
speedup would be less if we use IPs in FPGA as a point
of comparison instead of RTL simulation (and negligible or
even slower if the IP is in silicon). However, FPGA requires
mature RTL, and silicon implementations are only available
after initial fabrication. Consequently, RTL simulation seems
to be a better comparison point to establish the viability of
VirSoC for early hardware-software co-validation as required
for a VP solution.

VII. Conclusion

Early exploration of hardware-software interaction is a
crucial requirement for SoC validation. In this paper, we
addressed this problem through a new infrastructure, VirSoC,
that can automatically generate hybrid virtual platform envir-
onments usable for exploring such interactions. This permits
the validator to exploit the high simulation speed of VP
models while integrating them with the more accurate and
refined RTL models to target various use cases. We showed
how to use available collateral such as testbenches and stub
modules to enable automated integration of components at
different levels of abstraction and create a uniform virtual SoC
environment. We demonstrated the use of such environments
in several validation use cases. We also provided performance
comparisons with pure RTL simulation to demonstrate the
viability of the generated platforms.

In future work, we will extend the infrastructure to enable
more automation in interface generation. We will also explore
the use of the platform on other hardware-software use cases.

Acknowledgments: This research has been partially sup-
ported by the Semiconductor Research Corporation under
Contract No. 19-CADT-2868 and by the National Science
Foundation under Grant No. SATC-2223045. We thank Debjit
Pal and Kshitij Raj for help with the implementation and
evaluation of VirSoC.

References

[1] F. Ghenassia, Transaction level modeling with SystemC. Springer, 2005.
[2] “Synopsys Virtualizer,” https://www.synopsys.com/verification/

virtual-prototyping/virtualizer.html.
[3] “Cadence Helium,” https://www.cadence.com/en US/home/tools/

system-design-and-verification/helium-virtual-and-hybrid-studio.html.
[4] “Siemnens Vista,” https://eda.sw.siemens.com/en-US/ic/

vista-virtual-prototyping/.
[5] “Simics Virtualizer,” https://www.windriver.com/products/simics.
[6] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[7] C. woo Lee, “QEMU,” 2018, https://www.qemu.org/documentation/.
[8] Y. Abarbanel, E. Singerman, and M. Y. Vardi, “Validation of soc

firmware-hardware flows: Challenges and solution directions,” in Pro-
ceedings of the 51st Annual Design Automation Conference, 2014, pp.
1–4.

[9] W. Kim, H. Park, H. Kim, S. B. Choi, and S. Kim, “Early software
development and verification methodology using hybrid emulation plat-
form,” language, vol. 1, p. 2, 2017.

[10] S. Yerramili, “Addressing Post-silicon Validation Challenge: Leverage
Validation and Test Synergy,” in International Test Conference (ITC
2006), 2006.

[11] P. Mishra, R. Morad, A. Ziv, and S. Ray, “Post-silicon validation in the
soc era: A tutorial introduction,” IEEE Design & Test, vol. 34, no. 3,
pp. 68–92, 2017.

[12] A. Sinha and S. Ray, “From Test to Post-silicon Validation: Concepts
and Recent Trends,” in International Test Symposium, 2017.

[13] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L.-C. Wang, “Challenges
and trends in modern soc design verification,” IEEE Design Test, vol. 34,
no. 5, pp. 7–22, 2017.

[14] A. Horn, M. Tautschnig, C. Val, L. Liang, T. Melham, J. Grundy,
and D. Kroening, “Formal co-validation of low-level hardware/software
interfaces,” in 2013 Formal Methods in Computer-Aided Design, 2013,
pp. 121–128.

[15] K. Cong, F. Xie, and L. Lei, “Automatic concolic test generation
with virtual prototypes for post-silicon validation,” in 2013 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2013,
pp. 303–310.

[16] L. Lei, F. Xie, and K. Cong, “Post-silicon conformance checking
with virtual prototypes,” in Proceedings of the 50th Annual Design
Automation Conference, ser. DAC ’13. New York, NY, USA:
Association for Computing Machinery, 2013. [Online]. Available:
https://doi.org/10.1145/2463209.2488770

[17] P. Herber and S. Glesner, “A hw/sw co-verification framework for
systemc,” ACM Trans. Embed. Comput. Syst., vol. 12, no. 1s, Mar.
2013. [Online]. Available: https://doi.org/10.1145/2435227.2435257

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3398558

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 17,2024 at 19:45:19 UTC from IEEE Xplore. Restrictions apply.

https://www.synopsys.com/verification/virtual-prototyping/virtualizer.html
https://www.synopsys.com/verification/virtual-prototyping/virtualizer.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/helium-virtual-and-hybrid-studio.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/helium-virtual-and-hybrid-studio.html
https://eda.sw.siemens.com/en-US/ic/vista-virtual-prototyping/
https://eda.sw.siemens.com/en-US/ic/vista-virtual-prototyping/
https://www.windriver.com/products/simics
https://www.qemu.org/documentation/
https://doi.org/10.1145/2463209.2488770
https://doi.org/10.1145/2435227.2435257

13

[18] B. Chen, C. Havlicek, Z. Yang, K. Cong, R. Kannavara, and F. Xie,
“Crete: A versatile binary-level concolic testing framework,” in Funda-
mental Approaches to Software Engineering, A. Russo and A. Schürr,
Eds. Cham: Springer International Publishing, 2018, pp. 281–298.

[19] B. Chen, K. Cong, Z. Yang, Q. Wang, J. Wang, L. Lei, and F. Xie, “End-
to-end concolic testing for hardware/software co-validation,” in 2019
IEEE International Conference on Embedded Software and Systems
(ICESS). IEEE, 2019, pp. 1–8.

[20] B. Lin, K. Cong, Z. Yang, Z. Liao, T. Zhan, C. Havlicek, and F. Xie,
“Concolic testing of systemc designs,” in 2018 19th International
Symposium on Quality Electronic Design (ISQED). IEEE, 2018, pp.
1–7.

[21] T. Alam, Z. Yang, B. Chen, N. Armour, and S. Ray, “Firver: Concolic
testing for systematic validation of firmware binaries,” in ASP-DAC,
2022.

[22] “Confirma,” https://www.synopsys.com.
[23] “TAI Logic Module,” https://www.s2ceda.com/en/.
[24] “Palladium,” https://www.cadence.com/en US/home/tools/

system-design-and-verification/emulation-and-prototyping/palladium.
html.

[25] “ZeBu,” https://www.synopsys.com/verification/emulation.html.
[26] A. P. D. Nath, K. Raj, S. Bhunia, and S. Ray, “Soccom: Automated

synthesis of system-on-chip architectures,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 30, no. 4, pp. 449–462,
2022.

[27] F. Bellard, “Qemu, a fast and portable dynamic translator, in proceed-
ings of the annual conference on usenix annual technical conference,”
Anaheim, CA, pp. 41–41, 2005.

[28] C.-Y. Huang, Y.-F. Yin, C.-J. Hsu, T. B. Huang, and T.-M. Chang, “Soc
hw/sw verification and validation,” in 16th Asia and South Pacific Design
Automation Conference (ASP-DAC 2011), 2011, pp. 297–300.

[29] K. Kang, S. Park, B. Bae, J. Choi, S. Lee, B. Lee, and J.-B. Lee,
“Seamless soc verification using virtual platforms: An industrial case
study,” in 2019 Design, Automation & Test in Europe Conference &

Exhibition(DATE), 2019, pp. 1204–1205.
[30] J. Choi, K. Kang, B. Lee, S. Park, and J. Im, “Early hw/sw co-

verification using virtual platforms,” in 2021 18th International SoC
Design Conference (ISOCC), 2021, pp. 1–2.

[31] “Open Virtual Platforms,” https://www.ovpworld.org/.
[32] A. Wicaksana, A. Charif, C. Andriamisaina, and N. Ventroux, “Hybrid

prototyping methodology for rapid system validation in hw/sw co-
design,” in 2019 Conference on Design and Architectures for Signal
and Image Processing (DASIP), 2019, pp. 35–40.

[33] L. Masing, F. Lesniak, and J. Becker, “A hybrid prototyping framework
in a virtual platform centered design and verification flow,” IEEE
Embedded Systems Letters, vol. 13, no. 1, pp. 1–4, 2021.

[34] M. R. Kabir, N. Mishra, and S. Ray, “Vive: Virtualization of vehicular
electronics for system-level exploration,” in 2021 IEEE International
Intelligent Transportation Systems Conference (ITSC), 2021, pp. 3307–
3312.

[35] A. Charif, G. Busnot, R. Mameesh, T. Sassolas, and N. Ventroux,
“Fast virtual prototyping for embedded computing systems design and
exploration,” in Proceedings of the Rapid Simulation and Performance
Evaluation: Methods and Tools, 2019, pp. 1–8.

[36] F. Cucchetto, A. Lonardi, and G. Pravadelli, “A common architecture for
co-simulation of systemc models in qemu and ovp virtual platforms,”
in 2014 22nd International Conference on Very Large Scale Integration
(VLSI-SoC), 2014, pp. 1–6.

[37] X. Bian, “Implement a virtual development platform based on qemu,”
in 2017 International Conference on Green Informatics (ICGI). IEEE,
2017, pp. 93–97.

[38] G. Delbergue, M. Burton, F. Konrad, B. Le Gal, and C. Jego, “Qbox:
an industrial solution for virtual platform simulation using qemu and
systemc tlm-2.0,” in 8th European Congress on Embedded Real Time
Software and Systems (ERTS 2016), 2016.

[39] T.-C. Yeh and M.-C. Chiang, “On the interfacing between qemu and
systemc for virtual platform construction: Using dma as a case,” Journal
of Systems Architecture, vol. 58, no. 3-4, pp. 99–111, 2012.

[40] P. Dovgalyuk, N. Fursova, I. Vasiliev, and V. Makarov, “Qemu-based
framework for non-intrusive virtual machine instrumentation and intro-
spection,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, 2017, pp. 944–948.

[41] K. A. Meade and S. Rosenberg, A practical guide to adopting the
universal verification methodology (UVM). Cadence Design Systems,
2010.

[42] “QEMU TCG Plugins,” https://qemu.readthedocs.io/en/latest/devel/
tcg-plugins.html.

Tashfia Alam is a Ph.D. candidate in the department
of Electrical and Computer Engineering (ECE) at the
University of Florida. She received her Bachelor’s
degree from Bangladesh University of Engineering
and Technology in Electrical and Electronic Engin-
eering. After completing her undergraduate studies,
Tashfia gained industry experience at a VLSI startup,
focusing on device modeling and analog IP design.
She also holds a great interest in digital design,
computer architecture and formal validation which
eventually became her research interest. Tashfia’s

current research focuses on developing hardware-software co-validation tech-
niques leveraging formal methods for trustworthy System-on-Chip design.

Indira Bhoomareddy Ramaiah holds a Bachelor’s
Degree in Electronics and Communication Engin-
eering from Visvesvaraya Technological University
in India, followed by a Master’s Degree in Com-
puter Engineering from the University of Florida,
Gainesville. Indira’s research interests range from
improving Power, Performance and Area of System
on Chips to Hardware-Software Co-Validation. In-
dira has gained industry experience as a Synthesis
and Implementation Engineer at Qualcomm Tech-
nologies Inc., San Diego, where she contributed to

the development of cutting-edge CPUs. Currently, Indira serves as a Lead
Application Engineer for the Synthesis and Implementation team at Cadence
Design Systems, San Jose.

Sandip Ray (SM’13) received the Ph.D. degree
from the University of Texas at Austin. He is a
Professor at the Warren B. Nelms Institute for the
Connected World affiliated with the Department of
Electrical and Computer Engineering, University of
Florida, Gainesville, FL, USA. Prior to that, he
worked with NXP Semiconductors and Intel Stra-
tegic CAD Laboratories where he led industrial
research and R&D projects in pre-silicon and post-
silicon validation of security and functional cor-
rectness of SoC designs, design-for-security and

design-for-debug architectures, and security validation for automotive and the
Internet-of-Things applications. His current research targets correct, depend-
able, secure, and trustworthy computing. He is the Author of three books and
over 100 publications in international journals and conferences. He has also
served as a TPC Member of over 50 international conferences and as Guest
Editor for several journals.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3398558

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 17,2024 at 19:45:19 UTC from IEEE Xplore. Restrictions apply.

https://www.synopsys.com
https://www.s2ceda.com/en/
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/palladium.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/palladium.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/palladium.html
https://www.synopsys.com/verification/emulation.html
https://www.ovpworld.org/
https://qemu.readthedocs.io/en/latest/devel/tcg-plugins.html
https://qemu.readthedocs.io/en/latest/devel/tcg-plugins.html

	Introduction
	Background and Related Work
	Virtual Platforms
	Hardware-software Co-validation Basics
	HVP-based Hardware-Software Co-validation Practice
	An SoC Compiler
	Related Work

	Hybrid Virtual Prototyping Challenges and VirSoC Solution
	VirSoC Architecture and Tool flow
	Case Studies
	Discussion
	Reduction in Manual Effort
	Execution Performance of VirSoC-generated Platforms

	Conclusion
	References
	Biographies
	Tashfia Alam
	Indira Bhoomareddy Ramaiah
	Sandip Ray

